Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy-5x+y=17\)
\(\Leftrightarrow x\left(y-5\right)+y-5=12\)
\(\Leftrightarrow\left(x+1\right)\left(y-5\right)=12\)
\(\Leftrightarrow\left(x+1\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có bảng sau :
\(x+1\) | \(-12\) | \(-6\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(12\) |
\(x\) | \(-13\) | \(-7\) | \(-5\) | \(-4\) | \(-3\) | \(-2\) | \(0\) | \(1\) | \(2\) | \(3\) | \(5\) | \(11\) |
b) \(x\left(y-2\right)=3\)
\(\Leftrightarrow x\left(y-2\right)=3.1=-1.\left(-3\right)\)
*Trường hợp 1: \(x=3\)
\(\Leftrightarrow y-2=1\)
\(\Leftrightarrow y=1+2\)
\(\Leftrightarrow y=3\)
*Trường hợp 1: \(x=-1\)
\(\Leftrightarrow y-2=-3\)
\(\Leftrightarrow y=-3+2\)
\(\Leftrightarrow y=-2\)
\(\Rightarrow x=-1;y=-2\)
\(a,\) Ta có \(y=\frac{5x+9}{x+3}\)
Để \(y\) nhận giá trị nguyên thì : \(5x+9⋮x+3\)
\(\Rightarrow5\left(x+3\right)+9-15⋮x+3\)
\(\Rightarrow5\left(x+3\right)-6⋮x+3\)
\(\Rightarrow-6⋮x+3\)
\(\Rightarrow6⋮x+3\)
\(\Rightarrow x+3\inƯ_{\left(6\right)}\)
\(\Rightarrow x+3=\left(-6,-3,-2,-1,1,2,3,6\right)\) Máy tớ ko viết được ngoặc khép thông cảm nha
\(\Rightarrow x=\left(-9,-6,-5,-4,-2,-1,0,3\right)\)
\(\frac{4}{x}=\frac{5-2y}{3}\Leftrightarrow x\left(5-2y\right)=12\)
Do \(x,y\)là số nguyên nên \(x,5-2y\)là các ước của \(12\)mà \(5-2y\)là số lẻ nên ta có bảng giá trị:
5-2y | 1 | 3 | -1 | -3 |
x | 12 | 4 | -12 | -4 |
y | 2 | 1 | 3 | 4 |
Vậy phương trình có các nghiệm là: \(\left(12,2\right),\left(4,1\right),\left(-12,3\right),\left(-4,4\right)\).