Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu x; y; z là các số nguyên dương mà x y z = 1 => x = y = z = 1
=> bất đẳng thức luôn xảy ra dấu bằng
Sửa đề 1 chút cho z; y; x là các số dương
Ta có: \(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)
=> \(\frac{x^2}{y+1}\ge x-\frac{y+1}{4}\)
Tương tự:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge x+y+z-\frac{y+1}{4}-\frac{z+1}{4}-\frac{x+1}{4}\)
\(=\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> x = y = z = 1
Nếu \(x>3,y>3,z>3\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (không thỏa)
Vậy trong ba số x,y,z tồn tại ít nhất một số nguyên dương không lớn hơn 3
Không mất tính tổng quát, ta giả sử x là số nhỏ nhất. Vậy thì \(x\le y,x\le z\Rightarrow x=1\) , x = 2 hoặc x = 3
Nếu x = 1 thì \(\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow y+z=yz\) (bài toán tìm nghiệm nguyên kinh điển bạn tự làm nhé.)
Nếu x = 2 , x = 3 cũng tương tự.
Ơ hơ mới thấy câu này cách đây vài ngày
Em show lại cách làm :")
Giả sử \(x>3;y>3;z>3\)
thì \(VT< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1< 2\left(ktm\right)\)
Vậy trong 3 số x,y,z có ít nhất 1 số nhỏ hơn 3
Mà x,y,z là các số nguyên dương nên
Coi x là số nhỏ hơn 3
\(\left(+\right)x=1\Rightarrow\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow y+z=yz\)
\(\Leftrightarrow y-yz-1+z=-1\)
\(\Leftrightarrow\left(y-1\right)\left(z-1\right)=1\)
Dễ tìm được \(y=2;z=2\) \(\left(y=0;z=0\left(ktm\right)\right)\)
\(\left(+\right)x=2\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{3}{2}\)
\(\Leftrightarrow2y+2z=3yz\)
\(\Leftrightarrow6y-9yz-4+6z=-4\)
\(\Leftrightarrow\left(3y-2\right)\left(3z-2\right)=4\)
\(\Leftrightarrow\left(y,z\right)=\left(1,2\right);\left(2,1\right)\)( một số cặp khác ko thỏa mãn )
Vậy ta có các cặp x,y,z thỏa mãn : \(\left(1,2,2\right);\left(2,2,1\right);\left(2,2,1\right)\)
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\\ \)
\(\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\) tương tự với y,z
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
=> ta đi tìm GTNN của (..)\(A=\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
đặt x+1=a;y+1=b;z+1=c nội suy cho đỡ đau đầu a+b+c=4
\(B=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(a+b+c\ge3\sqrt[3]{abc}\)(*)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\)(*)
(*).(**)\(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{\left(a+b+c\right)}\)
\(\Rightarrow B\ge\frac{9}{4}\Rightarrow A\ge\frac{9}{4}\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)
DS: \(P_{max}=\frac{3}{4}\) đẳng thức khi a=b=c=> x=y=z=1/3
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)
\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế:
\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)
\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)
Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)
\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)
giải thế này chăng ???
xy+1=0
=>xy=-1
\(\Leftrightarrow\frac{x^2y+2x}{xy+1}=\frac{10}{7}\)
\(\Rightarrow\frac{x^2y+2x}{xy+1}-\frac{10}{7}=0\)
\(\Rightarrow\frac{\left(7x^2-10x\right)y+14x-10}{7\left(xy+1\right)}=0\)
<=>(7x2-10x)y+14x-10=0
\(\Rightarrow\frac{1}{7\left(xy+1\right)}=0\)
=>x(7x-10)=0
<=>7x2-10x=0
áp dụng denta ta có :
=>(-10)2-(4.7.0)=100
\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{+-\sqrt{100}+\left(10\right)}{14}\)
=>x1=\(\frac{10}{7}\) ; x2=0
nhưng cái này x;y;z=1;2;3 cơ