Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow y\left(x-2\right)+\left(x-2\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)\left(y+1\right)=1\)
TH1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy (x;y) = (3;0); ( 1;-2)
\(x\left(y+1\right)=2y+3\)
\(\Rightarrow x=\frac{2y+3}{y+1}\left(y\ne-1\right)\)
\(\Rightarrow x=\frac{2\left(y+1\right)+1}{y+1}=2+\frac{1}{y+1}\)
Để x nguyên thì y+1 phải là ước của 1
\(\Rightarrow y+1=\left\{-1;1\right\}\Rightarrow y=\left\{-2;0\right\}\)thay thế vào biểu thức tính x
\(\Rightarrow x=\left\{1;3\right\}\)
Ta có các cặp \(\left(x,y\right)=\left(1;-2\right);\left(x,y\right)=\left(3;0\right)\)
\(xy-x-2y=21\)
\(\Rightarrow x\left(y-1\right)=21+2y\)
\(\Rightarrow x=\dfrac{2y+21}{y-1}\)
Vì \(x\) là số nguyên nên \(\left(2y+21\right)⋮\left(y-1\right)\)
\(\Rightarrow\left(2y-2+23\right)⋮\left(y-1\right)\)
\(\Rightarrow23⋮\left(y-1\right)\)
\(\Rightarrow y-1\inƯ\left(23\right)\)
\(\Rightarrow y-1\in\left\{1;-1;23;-23\right\}\)
\(\Rightarrow y\in\left\{2;0;24;-22\right\}\)
\(\Rightarrow x\in\left\{25;-21;3;1\right\}\)
-Vậy các cặp số \(\left(x;y\right)\) là \(\left(2;25\right)\), \(\left(0;-21\right)\), \(\left(24;-21\right)\), \(\left(-22;1\right)\).
\(\Rightarrow\frac{18}{6x}+\frac{2xy}{6x}=\frac{5x}{6x}\)
=> 2xy-5x = -18
=> x(2y-5)=-18
Mà x,y thuộc Z
=>
x; 2y-5 thuôc Ư(-18)={1;-1;2;-2;3;-3;6;-6;9;-9;18;-18}
Xét bảng ( bn tự xét )
KL: ..........................
Đề nên cho thêm là x khác 0
\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)
\(\Leftrightarrow\frac{18}{6x}+\frac{2xy}{6x}=\frac{5x}{6x}\)
\(\Leftrightarrow18+2xy=5x\)
\(\Leftrightarrow2xy-5x=-18\)
\(\Leftrightarrow x\left(2y-5\right)=-18\)
Để \(x,y\in Z\Leftrightarrow x;2y-5\inƯ\left(-18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm18\right\}\)
Tìm được các cặp (x,y) : \(\left(1,2\right);\left(-1,-2\right);\left(3,4\right);\left(-3,1\right)\)
<=> Ta có{{y−2x−3∈Ư(11)={±1;±11}
Ta có bảng sau:
x-3 | -11 | -1 | 1 | 11 |
y-2 | -1 | -11 | 11 | 1 |
x | -8 | 2 | 4 | 14 |
y | 1 | -9 | 13 | 3 |
Vậy có 4 cặp số nguyên x , y thỏa mãn: (−8;1);(2;−9);(4;13);(14;3)