K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

a , b , c đều là 0

24 tháng 5 2017

thế bằng 1 cũng được mà

18 tháng 8 2018

a)   \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)

\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)

b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)

\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)

18 tháng 8 2018

a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)

                                  \(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004

Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)

                                                          \(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010

Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

10 tháng 7 2016
Dung 7 hang dang thuc A= ( 2005-1).(2005^2+2005+1)= 2004.4022031 chia het cho 2004 B=(2005+5).(2005^2-2005+1)= 2010.4018019 chia het cho 2010 C=(x^2)^3+1= (x^2+1).(x^4-x^2+1) chia het cho x^2+1
1 tháng 7 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)

Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)

Tương tự cho 2 trường hợp còn lại ta có ĐPCM

18 tháng 7 2016

Bạn ơi tham khảo nha :

Thư viện Đề thi & Kiểm tra

Chỉ cần kich vào thôi

Chúc bạn học giỏi

10 tháng 12 2019

Với \(a,b,c\ne0\); \(a+b+c\ne0\) , ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+bc^2+c^2a=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Không mất tính tổng quát, ta lấy \(a=-b\), ta có:

\(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{\left(-b\right)^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}\)

\(=\frac{-1}{b^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\) (1)

Ta có:\(\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{\left(-b\right)^{2005}+b^{2005}+c^{2005}}\)

\(=\frac{1}{-b^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\) (2)

Từ (1), (2), suy ra \(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{a^{2005}+b^{2005}+c^{2005}}\)

10 tháng 12 2019

Cái chỗ không mất tính tổng quát đấy, là do a, b, c bình đẳng nhau.

30 tháng 9 2018

Ta có : \(a+b+c=1\)

\(\Leftrightarrow\left(a+b+c\right)^3=1\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\)

\(\Leftrightarrow1+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\)

\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\a+c=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Với \(a=-b\) , \(a+b+c=1\)

\(\Rightarrow c=1\)

\(\Rightarrow a^{2005}+b^{2005}+c^{2005}=\left(-b\right)^{2005}+b^{2005}+c^{2005}=c^{2005}=1^{2005}=1\left(1\right)\)

Với \(b=-c\) , \(a+b+c=1\)

\(\Rightarrow a=1\) CMTT , ta được :

\(a^{2005}+b^{2005}+c^{2005}=1\left(2\right)\)

Với \(c=-a\) , \(a+b+c=1\)

\(\Rightarrow b=1\) CMTT , ta được :

\(a^{2005}+b^{2005}+c^{2005}=1\left(3\right)\)

Từ ( 1 ) ; ( 2 ) ; ( 3 )

\(\Rightarrow a^{2005}+b^{2005}+c^{2005}=1\left(đpcm\right)\)

P/s : Làm linh tinh , ko chắc :D

30 tháng 9 2018

Link c/m : \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

https://hoc24.vn/hoi-dap/question/668753.html