Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)
b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004
Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)
\(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010
Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\\ \RightarrowĐPCM\)
\(2005^3+125=\left(2005+5\right)\left(2005^2+2005\cdot5+5^2\right)=2010\left(2005^2+2005\cdot5+5^2\right)⋮2010\)\(x^2+y^2+z^2+3=2\left(x+y+z\right)\\ \Leftrightarrow x^2+y^2+x^2+3=2x+2y+2z\\ \Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\\ \left(x-1\right)^2\ge0;\left(y-1\right)^2\ge0;\left(z-1\right)^2\ge0\\ \Rightarrow\left(x-1\right)^2=\left(y-1\right)^2=\left(z-1\right)^2=0\\ \Rightarrow x-1=y-1=z-1=0\\ \Leftrightarrow x=y=z=1\)
b) \(2005^3+125\)
\(=2005^3+5^3\)
\(=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010\left(2005^2-2005.5+5^2\right)\)\(⋮\) 2010
Vậy \(2005^3+125\) chia hết cho 2010
Bài 2 thôi em dùng đồng dư cho chắc:v
a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)
Suy ra đpcm.
b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)
Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)
Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)
Suy ra đpcm
c) Do 41 là số nguyên tố và (2;41) = 1 nên:
\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)
Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)
Suy ra đpcm.
d) Tương tự
a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005 => 20062006 - 20062005 chia hết cho 2005.
b) 79m+1 - 79m = 79m x 79 - 79m = 79m x (79 - 1) = 79m x 78 chia hết cho 78 => 79m+1 - 79m chia hết cho 78.
c) 257 + 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1) = 512 x 5 x 6 = 512 x 30 chia hết cho 30 => 257 + 513 chia hết cho 30.
d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 56 x (64 - 5) = 56 x 49 chia hết cho 49 => 106 - 57 chia hết cho 49.
e) 710 - 79 - 78 = 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41 => 710 - 79 - 78 chia hết cho 41.
f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45 => 817 - 279 - 913 chia hết cho 45.
Cô hướng dẫn nhé, các bài này ta đều dùng hằng đẳng thức đáng nhớ để giải. Cụ thể ở bài này ta dùng hai hằng đẳng thức:
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\) và \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
Ví dụ câu a, các câu khác tương tự:
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004.\left(2005^2+2006\right)\) chia hết 2004.
Ta có B=20053+53
=(2005+5)(20052-2005.5+52)
=2010.(20052-2005.5+52) chia hết cho 2010 do 2010 chia hết cho 2010
hay 20053+125 chia hết cho 2010
Ta có:
\(B=2005^3+125=2005^3+5^3\)
\(B=\left(2005+5\right)^3-3.2005.5.\left(2005+5\right)\)
\(B=2010^3-2010.2005.15\)
\(B=2010\left(2010^2-2005.15\right)\) chia hết cho \(2010\)
a)\(43^{2004}+43^{2005}\)
\(=43^{2004}+43^{2004}.43\)
\(=43^{2004}.\left(1+43\right)\)
\(=43^{2004}.44\)
\(=43^{2004}.4.11\)chia het cho 11
b)\(27^3+9^5\)
\(=3^9+3^{10}\)
\(=3^9\left(1+3\right)\)
\(=3^9.4\)chia het cho 4
a)
Ta có :
A = 432004 + 432005 = 432004 . ( 1 + 43 ) = 432004 . 44
Có : 44 \(⋮\)11
=> A chia hết cho 11
=> ĐPCM
b)
Ta có :
B = 273 + 95 = 39 + 310 = 39 . ( 1 + 3 ) = 39 . 4
Có :
4\(⋮\)4
=> B \(⋮\)4
=> ĐPCM
nha !!!