Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 9040 chia cho 1 số ta được thương là 472 nên
Số đó là: 9040 : 472 = \(\dfrac{1130}{59}\) (không phải là số tự nhiên)
Nên không có số nào thỏa mãn đề bài.
2, ƯCLN(a; b) = 9; a + b = 108
Vì ƯCLN(a; b) = 9 ⇒ a =9.d; b = 9.k (d; k) = 1; d; k \(\in\) N*
Theo bài ra ta có: 9d + 9k = 108
9.(d + k) = 108
d + k = 108 : 9
d + k = 12
(d; k) = (1; 11); (2; 10); (3; 9); (4; 8); (5; 7); (6; 6); (7; 5); (8; 4); (9; 3); (10; 2); (11; 1)
Vì (d; k) = (1; 11); (5; 7); (7; 5); (11; 1)
(a; b) = (9; 99); (45; 63); (63; 45); (99; 9)
Giả sử d = (a;b). Khi đó ta có:
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
a) Vì \(ƯCLN\left(a,b\right)=9\)nên \(a=9m,b=9n,\left(m,n\right)=1\).
\(a+b=9m+9n=9\left(m+n\right)=108\Leftrightarrow m+n=12\)
Có bảng giá trị:
m | 1 | 5 | 7 | 11 |
n | 11 | 7 | 5 | 1 |
a | 9 | 45 | 63 | 99 |
b | 99 | 63 | 45 | 9 |
b) \(a=8m,b=8n,\left(m,n\right)=1\)
\(ab=8m.8n=64mn=960\Leftrightarrow mn=15\)
Ta có bảng giá trị:
m | 1 | 3 | 5 | 15 |
n | 15 | 5 | 3 | 1 |
a | 8 | 24 | 40 | 120 |
b | 120 | 40 | 24 | 8 |
Lời giải:
Vì ƯCLN(a,b)=9 nên đặt $a=9x, b=9y$ với $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
Khi đó:
$2a+3b=2.9x+3.9y=108$
$\Rightarrow 2x+3y=12$
$2x=12-3y\leq 9$ do $3y\geq 3$
$\Rightarrow x\leq 4,5$. mà $2x=12-3y=3(4-y)\vdots 3$ nên $x\vdots 3$
Do đó $x=3$
Nếu $x=3$ thì: $3y=12-2x=12-2.3=6\Rightarrow y=2$ (tm)
Khi đó $a=9x=27; b=9y=18$
ƯCLN(a;b) = 9 ⇒ a = 9.k; b = 9.d
Theo bài ra ta có: 2.9.k + 3.9.d = 108; (k; d) = 1; k; d \(\in\)N*
9.(2k + 3d) = 108
2k + 3d = 108: 9
2k + 3d = 12
d = \(\dfrac{12-2k}{3}\)
d = 4 - \(\dfrac{2k}{3}\)
⇒ \(\left\{{}\begin{matrix}\dfrac{2k}{3}< 4\\2k⋮3\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2k< 12\\k⋮3\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}k< 6\\k⋮3\end{matrix}\right.\)
⇒ k \(\in\) {0 ; 3; 6; 12;...;}
Vì k < 6 nên k = 3
Thay k = 3 vào biểu thức d = 4 - \(\dfrac{2k}{3}\) ta có:
d = 4 - \(\dfrac{2.3}{3}\)
d = 4 - 2
d = 2
Vậy a = 9.3 = 27; b = 9.2 = 18