Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề không đầy đủ. Bạn coi lại. Và cũng nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc đề dễ hiểu hơn.
Đây nha
Ta có:
(Vì )
Tương tự ta có:
Cộng (1), (2), (3) vế theo vế ta được
tìm giá trị nhỏ nhất;
a, A= |x + 1| +5
b, B =(x - 1)2 +|y - 3| +2
HELP ME !!! AI LÀM NHANH TUI TICK CHO
A, A=!x+1!+5
=>A=5 khi x=-1
B, B=\(\left(x-1\right)^2+!y-3!+2\)
B=2 khi x=1 và y=3
a. [ -2/3 + 3/7 ] : 4/5 + [ -1/3 + 4/7 ] : 4/5 = 0
b. 5/9 : [ 1/11 - 5/22 ] + 5/9 : [ 1/15 - 2/3 ] = -5
HT/nhớ k cho tôi nha
Ai làm xong sớm nhất tui k cho
\(\frac{2}{a}-\frac{b+1}{3}=\frac{1}{2}\)
=> \(\frac{6-ab+a}{3a}=\frac{1}{2}\)
=> 2(6 - ab + a) = 3a
=> 12 - 2ab + 2a = 3a
=> 2ab + a = 12
=> a(2b + 1) = 12
Ta có 12 = 1.12 = (-1).(-12) = 3.4 = (-3).(-4) = 6.2 = (-6).(-2)
Lập bảng xét 12 trường hợp
a | 1 | 12 | -1 | -12 | 4 | 3 | -4 | -3 | 6 | 2 | -2 | -6 |
2b + 1 | 12 | 1 | -12 | -1 | 3 | 4 | -3 | -4 | 2 | 6 | -6 | -2 |
b | 5,5 | 0 | -6,5 | -1 | 1 | 1,5 | -2 | -2,5 | 0,5 | 2,5 | -3,5 | -1,5 |
Vậy các cặp (a;b) nguyên thỏa mãn là (12 ; 0) ;(-12 ; -1) ; (4 ; 1) ; (-4 ; -2)
Bg (phải thế này không ?)
\(\frac{2}{a}-\frac{b+1}{3}=\frac{1}{2}\)
\(\frac{2}{a}=\frac{1}{2}+\frac{b+1}{3}\)
\(\frac{2}{a}=\frac{3}{6}+\frac{2.\left(b+1\right)}{6}\)
\(\frac{2}{a}=\frac{3}{6}+\frac{2b+2}{6}\)
\(\frac{2}{a}=\frac{3+2b+2}{6}\)
\(\frac{2}{a}=\frac{2b+5}{6}\)
\(\frac{12}{a}=2b+5\)
\(a.\left(2b+5\right)=12\)= 1.12 = 12.1 = 3.4 = 4.3 = 2.6 = 6.2 = -1.(-12) = -12.(-1) = -3.(-4) = -4.(-3) = -2.(-6) = -6.(-2)
Nhận thấy 2b + 5 lẻ
=> a.(2b + 5) = 12.1 = 4.3 = -12.(-1) = -4.(-3)
Lập bảng:
a = 12 | 2b + 5 = 1 | a = 4 | 2b + 5 = 3 | a = -12 | 2b + 5 = -1 | a = -4 | 2b + 5 = -3 |
=> b = -2 | => b = -1 | => b = -3 | => b = -4 |
Vậy các cặp {a; b} thỏa mãn là: (12; -2) ; (4; -1) ; (-12; -3) ; (-4; -4)
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
Điều kiện $a,b$ đưa ra chưa rõ ràng. Bạn xem lại.