Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác
Trong 4 số a,b,c,da,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2; d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12
Ta có đpcm,
\(3.M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}\)
=> \(3M-M=2M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{39}}\)
=> \(2M=1-\frac{1}{3^{39}}\)
=> \(M=\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)\)
do \(1-\frac{1}{3^{39}}< 1\)
=> \(\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)< \frac{1}{2}.1=\frac{1}{2}\)
Vay \(M< \frac{1}{2}\)
Chuc bn hoc tot !
a) A = (x - 1)^2 + |2y - 1| + 5.
Ta có: (x - 1)^2 là số chính phương => (x - 1)^2 >= 0 với mọi x; |2y - 1| >= 0 với mọi y.
=> A = (x - 1)^2 + |2y - 1| + 5 >= 0 + 0 + 5 = 5. => A >= 5
Vậy GTNN của A là 5. Dấu "=" xảy ra <=> x = 1; y = 1/2.
b) B = x + |x - 20| + 80.
Ta có: B = x + |x - 20| + 80 = x + |20 - x| + 80 >= x + (20 - x) + 80 = 20 + 80 = 100. => B >= 100.
Vậy GTNN của B là 100. Dấu "=" xảy ra <=> x = 0 hoặc x = 10 hoặc x = 20.
Nếu như đề bài bảo tìm GTNN của biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu, và giá trị đó sẽ là GTNN của biểu thức. Còn nếu như đề bài bảo tìm GTLN của biểu thức thì bạn làm ngược lại.
a. Vì \(\left(x-1\right)^2\ge0\forall x\); \(\left|2y-1\right|\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left|2y-1\right|\ge0\forall x;y\)
\(\Rightarrow\left(x-1\right)^2+\left|2y-1\right|+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left|2y-1\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\2y-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\y=\frac{1}{2}\end{cases}}}\)
Vậy Amin = 5 <=> x = 1 ; y = 1/2
b.
+) Nếu \(x\ge20\)
\(\Rightarrow B=x+\left|x-20\right|+80=x+x-20+80=2x+60\ge100\)
Dấu "=" xảy ra \(\Leftrightarrow2x=40\Leftrightarrow x=20\left(tm\right)\)
+) Nếu \(x< 20\)
\(\Rightarrow B=x+\left|x-20\right|+80=x+\left[-\left(x-20\right)\right]+80\)
\(\Rightarrow B=x-x+20+80=100\)
Vậy Bmin = 100 \(\Leftrightarrow x\le20\)
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
\(\frac{2}{a}-\frac{b+1}{3}=\frac{1}{2}\)
=> \(\frac{6-ab+a}{3a}=\frac{1}{2}\)
=> 2(6 - ab + a) = 3a
=> 12 - 2ab + 2a = 3a
=> 2ab + a = 12
=> a(2b + 1) = 12
Ta có 12 = 1.12 = (-1).(-12) = 3.4 = (-3).(-4) = 6.2 = (-6).(-2)
Lập bảng xét 12 trường hợp
Vậy các cặp (a;b) nguyên thỏa mãn là (12 ; 0) ;(-12 ; -1) ; (4 ; 1) ; (-4 ; -2)
Bg (phải thế này không ?)
\(\frac{2}{a}-\frac{b+1}{3}=\frac{1}{2}\)
\(\frac{2}{a}=\frac{1}{2}+\frac{b+1}{3}\)
\(\frac{2}{a}=\frac{3}{6}+\frac{2.\left(b+1\right)}{6}\)
\(\frac{2}{a}=\frac{3}{6}+\frac{2b+2}{6}\)
\(\frac{2}{a}=\frac{3+2b+2}{6}\)
\(\frac{2}{a}=\frac{2b+5}{6}\)
\(\frac{12}{a}=2b+5\)
\(a.\left(2b+5\right)=12\)= 1.12 = 12.1 = 3.4 = 4.3 = 2.6 = 6.2 = -1.(-12) = -12.(-1) = -3.(-4) = -4.(-3) = -2.(-6) = -6.(-2)
Nhận thấy 2b + 5 lẻ
=> a.(2b + 5) = 12.1 = 4.3 = -12.(-1) = -4.(-3)
Lập bảng:
Vậy các cặp {a; b} thỏa mãn là: (12; -2) ; (4; -1) ; (-12; -3) ; (-4; -4)