Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
Bài làm:
Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{585.25}{83}\\y^2=\frac{585.49}{83}\\z^2=\frac{585.9}{83}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm5\sqrt{\frac{585}{83}}\\y=\pm7\sqrt{\frac{585}{83}}\\z=\pm3\sqrt{\frac{585}{83}}\end{cases}}\)
Số hơi xấu tí
theo tính chất dãy tỉ số bằng nhau
\(\Rightarrow\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=\frac{x^2+y^2+z^2}{5^2+7^2+3^2}=\frac{585}{83}\)
do đó
\(\frac{x}{5}=\frac{585}{83}\Rightarrow x=5.585:83\approx35,3\)
\(\frac{y}{7}=\frac{585}{83}\Rightarrow y=7.585:83\approx49,4\)
\(\frac{z}{3}=\frac{585}{83}\Rightarrow z=3.585:83\approx21\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
a)x/4=y/3=z/9
nên x/4=3y/9=4z/36
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{z-3y+4z}{4-9+36}=\frac{62}{31}=2\)
Do đó, x/4=2 nên x=4*2=8
y/3=2 nên x=2*3=6
z/9=2 nên z=9*2=18
b)Gọi x/12=y/9=z/5=k nên x=12k; y=9k; z=5k
=>x*y*z=12k*9k*5k=(12*9*5)*k3=540*k3
mà x*y*z=20 nên 540*k3=20
k3=20/540=1/27=(1/3)^3
=>k=1/3
=>x=12*1/3=4
y=9*1/3=3
z=5*1/3=5/3
c)x/5=y/7=z/3 nên x2/25=y2/49=z2/9
Áp dụng tc dãy tỉ số bằng nhau, ta được:
x2/25=y2/49=z2/9=\(\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Do đó, x2/25=9 nên x2=9*25=225=152=(-15)2
nên x=15 hoặc x=-15
y2/49=9 nên y2=9*49=441=212=(-21)2
nên y=21 hoặc y=-21
z2/9=9 nên z2=9*9=92 =(-9)2
nên z=9 hoặc z=-9
mình chỉ làm 1 phần thui nhé,lười lắm
x/2=y/3=>3x=2y
=>x=15:(3-2).2=30
y=30+15 =45
Đáp án là:
a) x=2,5;y=1,5.
Đáp án là:
a) x=2,5;y=1,5.
b) Hầu như x=29,46230884.