Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là : a ; b ; c Ta có : 5 a = 9 b ; 10 a = 7 c ⇒ 10 a = 18 b = 7 c
Ta gọi : 10 a ; 18 b ; 7 c = k Ta có : a = 10k b = 18k c = 7k BCNN (a;b;c) = k.10.9.7=630.k=3150
⇒k = 5 a = 10 . 5 = 50 b = 5 . 18 = 90 c = 5 . 7 = 35
Vậy số tự nhiên cần tìm là : 35 ; 50 và 90
Gọi số thứ nhất là a
=> Số thứ hai là 3/2a
Số thứ 3 là 9/4a
Vì tổng các luỹ thừa bậc 3 của 3 số nguyên là -1009, nên ta có:
\(a^3+\left(\dfrac{3}{2}a\right)^3+\left(\dfrac{9}{4}a\right)^3=-1009\\ \Leftrightarrow a^3+\dfrac{27}{8}a^3+\dfrac{729}{64}a^3=-1009\\ \Leftrightarrow\dfrac{1009}{64}a^3=-1009\\ \Leftrightarrow\dfrac{a^3}{64}=-1\\ \Leftrightarrow\left(\dfrac{a}{4}\right)^3=\left(-1\right)^3=-1\\ \Leftrightarrow\dfrac{a}{4}=-1\\ \Leftrightarrow a=-4\)
Vậy số thứ nhất là 4, số thứ hai là 6 và số thứ ba là 9.
Gọi ba số cần tìm là a,b,c
Theo đề, ta có: a/1=b/3 và b/1=c/5
=>a/1=b/3=c/15
Áp dụng tính chất của DTSBN, ta được:
a/1=b/3=c/15=(a+b+c)/(1+3+15)=190/19=10
=>a=10; b=30; c=150
gọi 3 số cần tìm là x,y,z
ta có x3 +y3+z3=-1009
x/y=2/3 => x/2=y/3 => x/4=y/6
x/z=4/9 => x/4=z/9
=> x/4+y/6+z/9=x^3/64+y^3/216+z^3/729 = -1009/1009=1
=> x=-4;y=-6;z=-9
Câu hỏi của Super man - Toán lớp 7 - Học toán với OnlineMath