Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Gọi hai số cần tìm có dạng là a;a+1
Theo đề, ta có: a(a+1)=156
=>a^2+a-156=0
=>(a+13)(a-12)=0
=>a=12
=>Hai số cần tìm là 12 và 13
2:
Gọi ba số liên tiếp cần tìm lần lượt là a;a+1;a+2
Theo đề, ta có: a(a+1)(a+2)=3360
=>a^3+3a^2+2a-3360=0
=>a=14
=>Ba số cần tìm là 14;15;16
gọi số cần tìm là aaa (a lớn hơn 0 và nhỏ hơn 10)
theo bài ra ta có 1+ 2+ 3 +... + n = aaa (n là số tự nhiên)
=> n.(n+1) : 2 = a.111
=> n.(n+1) = 2.a.3.37
ta chọn a từ 1 đến 9 sao cho tích 2.a.3.37 phân tích được thành tích của 2 số tự nhiên liên tiếp
=> chỉ có a = 6 thoả mãn
vậy số cần tìm là 666
vì là số có 3 chữ số giống nhau nên mk đặt A = aaa đương nhiên aaa lớn hơn 100 và nhỏ hơn 999 [vì là số có 3 chữ số]
theo đề bài ta có:1 + 2 + 3 + .................+ n = aaa [ n và a là số tự nhiên]
suy ra n*[n+1] /2 = a *111 [gợi ý nhé tính tổng dãy số ta lấy số đầu cộng số cuối * số số hạng /2] mà [ n -1] / 1 +1 = n]
n*[n+1] = 2 * a*3*37 [ mk tách 111 ra thui nha]
và mk chọn a từ 1 đến 9 sao cho tích 2 * 1 * 3* 37 là 2 số tự nhiên liên tiếp
vậy chỉ có a= 6 nên số cần tìm là 666
lưu ý cái mk cho trong ngoặc là gợi ý để bạn hiểu thôi nha
câu 1. Nhận xét:
Loại suy:
3193 không chia hết cho 2 suy ra 3193 ko chia hết cho 2k, 4k, 6k, 8k
Tương tự 3193 không chia hết cho 3k, 7k, 5k, 9k suy ra 3193 là số nguyên tố
Gọi số chia là ab => b chỉ có thể là 1, 3, 7, 9
Ngoài ra, ta nhận thấy thương của phép chia cũng phải là một số nguyên tố (kí hiệu là *)
Phép thử:
*b=9 => a=1, 2, 5, 7, 9 => thương ko là số tự nhiên
*b=7 => a=1, 3, 4, 6, 9 => thương ko là số tự nhiên
*b=3 => a=1, 2, 4, 5, 7, 8 => thương ko là số tự nhiên
*b=1 => a=3, 4, 6, 1 => tìm được a=3
=> Thương : 103 ; số chia : 31
tìm số tự nhiên n biết tổng A=1+2+3+4+...+n là một số tự nhiên có 3 chữ số .các chữ số giống nhau ??
Giả sử tổng \(A=\overline{aaa}\) ta có
\(\overline{aaa}=\frac{n\left(1+n\right)}{2}\Rightarrow2.\overline{aaa}=n\left(n+1\right)\)
\(\Rightarrow2.\overline{aaa}=2.a.111=2.a.3.37=6.a.37=n\left(n+1\right)\) (*)
n và (n+1) là 2 số tự nhiên liên tiếp \(\Rightarrow6.a=\orbr{\begin{cases}36\Rightarrow a=6\\38\Rightarrow a=\frac{38}{6}\left(loai\right)\end{cases}}\)
Thay a=6 vào (*)\(\Rightarrow6.a.37=6.6.37=36.37=n\left(n+1\right)\Rightarrow n=36\)
a; Tổng của ba số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2
Tổng của ba số tự nhiên liên tiếp có là:
n + n + 1 + n +2 = 3n + 3 = 3.(n+ 1) ⋮ 3(đpcm)
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
Câu 1:
Có hai số tự nhiên liên tiếp có tích là 600, mà tích có chữ số tận cùng là 0, nên các thừa số của nó không có thừa số nào có chữ số tận cùng là 1, 3, 7, 9.
\(\Rightarrow\) Hai số đó chỉ có thể có chữ số tận cùng là 0, 2 , 4, 5 , 6, 8.
Ta có hai số tự nhiên liên tiếp là:
24, 25 và 45, 46 và 55, 56
Thử các cặp số này ta thấy:
55 x 56 = 3080 ( khác 600 loại )
45 x 46 = 2070 ( khác 600 loại )
24 x 25 = 600 ( chọn )
Vậy hai số tự nhiên liên tiếp có tích là 600 là:24 và 25
Giải
Gọi 3 chữ số giống nhau là aaa
Ta có :1+2+3+...+n =aaa
Suy ra (1+n).n/2=aaa =111.a
=(1+n).n=222.a =37.6.a
Mà (1+n ) và n là tích 2 số tự nhiên liên tiếp . Suy ra (1+n ).n = 36.37 suy ra n=36
Vậy n=36
Gọi số có 3 chữ số giống nhau là : aaa
Ta có : 1 + 2 + 3 + ... + n = aaa
\(\Rightarrow\frac{\left(1+n\right)n}{2}=aaa\) = 111 . a
\(\Rightarrow\) ( 1 + n ) n = 2 . 111 . a = 222a
= 37 . 6a
Ta có : ( 1 + n ) n là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) ( 1 + n ) n = 37 . 36
\(\Rightarrow\) n = 36