Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{0.375-0.3+\dfrac{3}{11}+\dfrac{3}{12}}{-0.625+0.5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1.5+1-0.75}{2.5+\dfrac{5}{3}-1.25}\)
=\(\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\dfrac{5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)
=\(\dfrac{3.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}+\dfrac{3\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}\)
=\(\dfrac{3}{-5}+\dfrac{3}{5}\)
=\(0\)
b) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13\)
\(\sqrt{168}< \sqrt{169}=13\)
Vì \(\sqrt{50}+\sqrt{49}+1>13>\sqrt{168}\)
nên \(\sqrt{50}+\sqrt{49}+1>\sqrt{168}\)
\(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,265+0,5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\\ =\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\left(\dfrac{5}{8}-\dfrac{5}{10}+\dfrac{5}{11}+\dfrac{5}{12}\right)}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\\ =\dfrac{3\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}+\dfrac{3\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}\\ =\dfrac{-3}{5}+\dfrac{3}{5}=0\)
\(=\left(\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}+\dfrac{3\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\right)\cdot\dfrac{2005}{1890}+115\)
\(=\left(\dfrac{3}{5}-\dfrac{3}{5}\right)\cdot\dfrac{2005}{1890}+115\)
=115
\(D=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{-5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)
\(=\dfrac{-3}{5}+\dfrac{3}{5}=0\)
1)
\(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\)
\(=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\dfrac{5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{6}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)
\(=\dfrac{3\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}+\dfrac{3\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}\)
\(=\dfrac{3}{-5}+\dfrac{3}{5}\)
\(=-\dfrac{3}{5}+\dfrac{3}{5}\)
\(=0\)
\(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,53+0,5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}.\)
\(=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\dfrac{53}{100}+\dfrac{1}{2}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+1-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}.\)
\(=\dfrac{\dfrac{263}{440}}{\dfrac{-1487}{1650}}+\dfrac{\dfrac{7}{4}}{\dfrac{35}{12}}=\dfrac{-3945}{5948}+\dfrac{3}{5}=\dfrac{-1881}{29740}.\)
\(=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\dfrac{5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)
\(=\dfrac{-3}{5}+\dfrac{3}{5}=0\)