Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 21a21a21a chia hết cho 31
=>21a.1001001 chia hết cho 31
Mà (1001001,31)=1
=>21a chia hết cho 31
Mặt khác 217 chia hết cho 31
=>a=7
a)Đặt n=20a20a20a
Ta có:n=20a.1001001=20a.(1001000+1)=20a.1001000+20a
Mà 20a.1001000 chia hết cho 7(vì 1001000 chia hết cho 7)
=>20a chia hết cho 7
20a=196+(4+a)
196 chia hết cho 7=>4+a chia hết cho 7
Mà a là chữ số
=>a=3
(các số trên có gạch đầu nha)
Bài 1 :
\(\overline{21a21a21a}=\overline{21a}.1001001\) chia hết cho 31
=> \(\overline{21a}\) chia hết cho 31 (vì 1001001 ko chia hết cho 31)
Vì a là chữ số, mà chỉ có 217 chia hết cho 31
nên a = 7
Muốn 2x7y2 chia hết cho 36 thì 2x7y2 phải chia hết cho 4 và 9
Để 2x7y2 chia hết cho 4 thì 2 chữ số cộng lại phải chia hết cho 4
=>y={2;6}
Để 2x7y2 chia hết cho 9 thì tổng các chữ số của số đó cộng lại chia hết cho 9
Vì 2+x+7+y+2=11+x chia hết cho 9
Mà 2+x+7+2+2=13+x nên x=5
2+x+7+6+2=17+x nên x=1
=>2x7y2=25722
hay 21762
Ta có \(\overline{abbc}=\overline{ab}.\overline{ac}.7^{\left(1\right)}\)
\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)
\(\Leftrightarrow7.\overline{ac}-100=\frac{bc}{ab}\)Vì \(0< \frac{bc}{ab}< 10\)nên \(0< 7.\overline{ac}-100< 10\)
\(\Leftrightarrow100< 7.\overline{ac}< 110\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\).Vậy \(\overline{ac}=15\)
Thay (1) được \(\overline{1bb5}=\overline{1b}.15.7\Leftrightarrow1005+110b=1050+105.b\)
\(\Leftrightarrow5b=45\Leftrightarrow b=9\)
Vậy \(a=1,b=9,c=5\)
Bấm vào câu hỏi tương tự đi bạn .
Anh Lê Mạnh Tiến Đạt giải rồi đấy
a - b = 6 <=> a = 6 + b 4a7 và 1b5 có gạch ngang trên đầu:
4a7 <=> 400 + 10a + 7 1b5
<=> 100 + 10b + 5 (400 + 10a + 7) + (100 + 10b + 5) 512 + 10a + 10b
Thay a = 6 + b vào 512 + 60 + 10b + 10b => 572 + 20b
Chia hết cho 9 khi 5+7+2+2+b chia hết cho 9
<=> b = 2 thỏa mãn
=> a = 8 487 + 125
Đáp số: 612
\(\overline{\text{21a21a21a}}\)=\(\overline{\text{21a}}\)\(\text{.100100 chia hết cho 31}\)
=>\(\overline{\text{21a}}\)\(\text{ chia hết cho 31 (vì 1001001 ko chia hết cho 31)}\)
\(\text{Vì a là chữ số, mà chỉ có 217 chia hết cho 31 nên a = 7}\)
theo cau tren a=7