Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có
BC chung
MC=BN
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có
BC chung
MC=BN
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
1)Xét TG AMC vg và TG ANB vuông, có
<A chung
AB=AC(ABC cân)
=>TG AMC = TG ANB(ch-gn)
=>BN=CM(2 cạnh tương ứng)
2) Ta có TG ABN=TG ACM=>ABN=ACM
3) Ta có TG ABN=TG ACM=>AM=AN=>BM=CN(M thuộc AB, N thuộc AC)
=>TG BMH=TG CNH=>BH=CH(2 cạnh tương ứng)
=>TG BHC cân tại H
4) AM=AN(TG ABN=TG ACM)=> TGAMN cân tại A
TG AMN cân tại A có
M=N=(1800-A)/2 (1)
và TG ABC cân tại A có
B=C=(1800-A)/2 (2)
(1)(2)=>M=B MÀ 2 góc này ở vị trí đồng vị
=>MN//BC
5) ta có TG ABC cân tại A
=>AH là đường cao đồng thời là đường trung tuyến ứng với cạnh BC (H là giao điểm 2 đường cao BN,CM)
mà AD cũng là trung tuyến ứng với cạnh BC (D là trung điểm BC)
=>AH và AD trùng nhau hay A,H,D thẳng hàng
!!!!!!!CHÚC!!!MAY!!!MẮN!!!!!!!
Bài 4:
b) Ta có: ΔABN=ΔACM(cmt)
nên \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)
haizz nói rõ ràng ở bài 4 là "Các bạn giúp mk phần d và e thôi chứ ko cần làm cả bài 4 đâu" chẹp bó tay
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có
Ab=AC
góc A chung
=>ΔANB=ΔAMC
=>BN=CM
Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(cmt)
Do đó: ΔABN=ΔACM(c-g-c)
b) Xét ΔANM có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)