Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(7^{30}=\left(7^3\right)^{10}=343^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
mà \(343^{10}>81^{10}\)
=>\(7^{30}>3^{40}\)
b) 202^303 và 303^202
\(202^{303}=\left(202^3\right)^{100}=8242408^{100}\)
\(302^{202}=\left(302^2\right)^{100}=91204^{100}\)
\(8242408^{100}>91204^{100}
\)
202^303 > 303^202
Câu 1.9920và 999910
=(992)10=980110
Vậy 980110<999910 suy ra 9920<999910
Câu 2. 3500và 7300
3500=(35)100=243100
7300=(73)100=343100
Vậy 243100<343100 => 3500<7300
b: 99^20=(99^2)^10=9801^10
=>99^20<9999^10
d: 10^10=100^5=4*50^5<48*50^5
e: 1990^10+1990^9
=1990^9(1990+1)
=1990^9*1991
1991^10=1991^9*1991
=>1991^10>1990^9*1991
=>1991^10>1990^10+1990^9
Bài2: a. 3500= (35).100=243100
7300= (73).100= 147100. Mà 243> 147 => 243100> 147100. Vây 3500> 7300
b.
2a.
3^500=(3^5)^100=243^100
7^300=(7^3)^100=343^100
Ta thấy :243^100<343^100 suy ra:3^500<7^300
a)3500 = (35)100 = 243100
7300 = (73)100 = 343100
243100 < 343100 => 3500 < 7300
a) 31^11<32^11=2^55<2^56=(2^4)^14=16^14<17^14
b) 5^2n=25^n<32^n=2^5n
c) 3^500=(3^5)^100=243^100
7^300=(7^3)^100=343^100
Có 243^100<343^100 nên 3^500<7^300
d)8^5=2^15=2^14.2
3.4^7=3.2^14
Có 2.2^14<3.2^14 nên 8^5<3.4^7
------------------Hok tốt------------------
a, Ta có :
3111 < 3211 = ( 25 )11 = 255 ( 1 )
1714 > 1614 = ( 24 )14 = 256 ( 2 )
Từ 1 và 2 => 3111 < 1714
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)