K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

a) 31^11<32^11=2^55<2^56=(2^4)^14=16^14<17^14

b) 5^2n=25^n<32^n=2^5n

c) 3^500=(3^5)^100=243^100

   7^300=(7^3)^100=343^100

Có 243^100<343^100 nên 3^500<7^300

d)8^5=2^15=2^14.2

  3.4^7=3.2^14

Có 2.2^14<3.2^14 nên 8^5<3.4^7

------------------Hok tốt------------------

1 tháng 6 2018

a, Ta có :

3111 < 3211 = ( 25 )11 = 255 ( 1 )

1714 > 1614 = ( 24 )14 = 256 ( 2 )

Từ 1 và 2 => 3111 < 1714

30 tháng 3 2017

đề là gì vậy bạn

Gọi 199010+19909 là A

Gọi 199110 là B

A=199010+19909=19909(1990+1)=19909.1991

B=199110=19919.1991

Vậy A<B

18 tháng 10 2021

a) <
b) <
c) >
d) =

18 tháng 10 2021

cảm nơn bạn nhe.

13 tháng 7 2023

a) \(2^x=16=2^4\Rightarrow x=4\)

b) \(x^3=27=3^3\Rightarrow x=3\)

c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)

d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)

\(\Rightarrow x=6\) hay \(x=-2\)

 

13 tháng 7 2023

a) \(2^{300}=2^{3.100}=8^{100}\)

\(3^{200}=3^{2.100}=9^{100}\)

vì \(8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) \(3^{500}=3^{5.100}=243^{100}\)

\(7^{300}=7^{3.100}=343^{100}\)

vì \(243^{100}< 343^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)

 

14 tháng 5 2022

`3^(2 + n) và 2^(3 + n) `

`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`

`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`

ta thấy `9>8   ; 3^n > 2^n `

vậy `3^(2 + n) > 2^(3 + n) `

14 tháng 5 2022

\(\left\{{}\begin{matrix}3^{2+n}=3^2\times3^n=9\times3^n\\2^{3+n}=2^3\times2^n=8\times2^n\end{matrix}\right.\)

ta có 

\(\left\{{}\begin{matrix}9>8\\3^n>2^n\end{matrix}\right.\)

\(=>3^{2+n}>2^{3+n}\)

8 tháng 11 2017

Đáp án cần chọn là: A

9 tháng 9 2021

Ý A nhé bạn

chúc học tốt

4 tháng 10 2023

ko bít nữa

 

4 tháng 10 2023

202³⁰³ = (202³)¹⁰¹ = 8242408¹⁰¹

303²⁰² = (303²)¹⁰¹ = 91809¹⁰¹

Do 8242408 > 91809 nên 8282408¹⁰¹ > 91809¹⁰¹

Vậy 202³⁰³ > 303²⁰²

25 tháng 3 2021

a) 3^2 và 3.2

3^2=9

3.2=6

-> 3^2>3.2

b)2^3 và 3^2

2^3=8

3^2=9

-> 2^3<3^2

c) 3^3 và 3^4

Vì hai số có cùng cơ số nên ta so sánh số mũ

3<4

-> 3^3<3^4

a)ta có 32=9 ; 3.2=6 => 32 > 3.2

b)ta có 23=8 ; 32=9  => 23 < 32

c) ta có 33 và 34 

vì 2 số đều cùng 1 cơ số 

mà cơ số đầu có số mũ = 3,cơ số còn lại có lũy thừa =4

=> 3<4

=> 33<34

a) \(243^5=\left(3^5\right)^5=3^{25}\)

\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)

mà \(3^{25}>3^{16}\)

nên \(243^5>3\cdot27^5\)

b) \(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}\)

mà \(5^{20}< 5^{21}\)

nên \(625^5< 125^7\)

c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)

\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)

mà \(8242408^{101}>91809^{101}\)

nên \(202^{303}>303^{202}\)