Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{30}{60}=\dfrac{1}{2}\)
\(C=\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{90}>\dfrac{1}{90}+\dfrac{1}{90}+...+\dfrac{1}{90}=\dfrac{30}{90}=\dfrac{1}{3}\)
Do đó: \(B+C>\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)(đpcm)
\(\dfrac{4}{7}v\text{à }\dfrac{16}{63}\\ \dfrac{4}{7}=\dfrac{4\cdot9}{7\cdot9}=\dfrac{36}{63}\\ \dfrac{36}{63}>\dfrac{16}{63}\\ \Rightarrow\dfrac{4}{7}>\dfrac{16}{36}\)
\(\dfrac{4}{17}\) và \(\dfrac{16}{63}\)
\(\dfrac{4}{63}>\dfrac{16}{63}\)
\(=>\dfrac{4}{17}>\dfrac{16}{63}\)
\(\dfrac{5}{29}\) và \(\dfrac{7}{33}\)
\(\dfrac{5}{33}< \dfrac{7}{33}\)
\(=>\dfrac{5}{29}< \dfrac{7}{33}\)
\(\dfrac{44}{57}\) và \(\dfrac{89}{99}\)
\(\dfrac{44}{99}< \dfrac{89}{99}\)
\(=>\dfrac{44}{57}< \dfrac{89}{99}\)
\(\dfrac{19}{53}\) và \(\dfrac{30}{73}\)
\(\dfrac{19}{73}>\dfrac{30}{73}\)
\(=>\dfrac{19}{53}>\dfrac{30}{73}\)
Gọi \(\frac{8^9+12}{8^9+7}\)và \(\frac{8^{10}+4}{8^{10}-1}\) lần lượt là M1 và M2 để tiện phân biệt.
Ta có: \(M_1=\frac{8^9+12}{8^9+7}=\frac{12}{7}\) (Lượt bỏ các số giống nhau ở cả tử và mẫu)
\(M_2=\frac{8^{10}+4}{8^{10}-1}=\frac{4}{1}=4\) (Lượt bỏ các số giống nhau ở cả tử và mẫu)
Ta có:\(\frac{12}{7}< 4\Leftrightarrow M_1< M_2\)
Vậy ......