Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{3^{122}}{3^{124}+1}=\frac{3^{123}}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+1}=A\)
Do đó \(A>B\).
A = \(\dfrac{3^{123}+1}{3^{125}+1}\) Vì 3123 + 1 < 2125 + 1 Nên A = \(\dfrac{3^{123}+1}{3^{125}+1}\)< \(\dfrac{3^{123}+1+2}{3^{125}+1+2}\)
A < \(\dfrac{3^{123}+3}{3^{125}+3}\) = \(\dfrac{3.\left(3^{122}+1\right)}{3.\left(3^{124}+1\right)}\) = \(\dfrac{3^{122}+1}{3^{124}+1}\) = B
Vậy A < B
Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)
\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)
a) Vì \(721< 834\Rightarrow\frac{5}{721}>\frac{5}{834}\)
b) Ta có \(\frac{4}{37}< \frac{5}{37}< \frac{5}{36}\Rightarrow\frac{4}{37}< \frac{5}{36}\)
c) Ta có \(\frac{1994}{1995}=1-\frac{1}{1995}\)
\(\frac{1999}{2000}=1-\frac{1}{2000}\)
Vì \(\frac{1}{1995}>\frac{1}{2000}\Rightarrow1-\frac{1}{1995}< 1-\frac{1}{2000}\Rightarrow\frac{1994}{1995}< \frac{1999}{2000}\)
d) Ta có :\(\frac{489}{487}=1+\frac{2}{487}\)
\(\frac{487}{485}=1+\frac{2}{485}\)
Vì \(\frac{2}{485}>\frac{2}{487}\Rightarrow1+\frac{2}{485}>1+\frac{2}{487}\Rightarrow\frac{489}{487}>\frac{487}{485}\)
e) Ta có : \(\frac{123.125+119}{124.125-177}=\frac{123.125+119}{\left(123+1\right).125-177}=\frac{123.125+119}{123.125+125-177}=\frac{123.125+119}{123.125-52}\)
\(=\frac{123.125-52+171}{123.125-52}=1+\frac{171}{123.125-52}>1\)
f) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}=1-\frac{1}{200}< 1\)
a) \(A=\frac{135}{135.136-1}\) và \(B=\frac{136}{136.137-1}\)
\(A=\frac{1}{136-1}=\frac{1}{135}\) \(B=\frac{1}{137-1}=\frac{1}{136}\)
Vì \(\frac{1}{136}\)< \(\frac{1}{135}\)nên A > B.
a, A = \(\frac{136-1}{\left(136-1\right)136-1}\) = \(\frac{136-1}{136^2-136-1}\) B=\(\frac{136}{136\left(136+1\right)-1}\)=\(\frac{136}{136^2+136-1}\)
x=136, A-B =\(\frac{x-1}{x^2-x-1}\)-\(\frac{x}{x^2+x-1}\) =\(\frac{x^3+x^2-x-x^2-x+1-x^3+x^2+x}{\left(x^2-1\right)^2-x^2}\)=\(\frac{x^2-x+2}{\left(x^2-1\right)^2-x^2}\)<0
=> A<B
b,A = \(\frac{456-333}{456}\)= 1-333/456 B=\(\frac{789-333}{789}\)= 1-333/789
=> A>B
c, 3/14<3/13<3/12<3/11<3/10 <2/5
M = 3/10+3/11+3/12+3/13+3/14 < 2/5 x5 = 2= N