Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 2a76b chia hết cho 10 thì b = 0
Nếu b =0 thì 2a76b =2a760
để 2a760 chia hết cho 9 thì [ 2 + a + 7 + 6 + 0 ] chia hết cho 9
[ 15 + a ] chia hết cho 9
=> a = 3
Vậy : a = 3 và b = 0
a, ta có :
123/456 < 123/789 < 456/789
Từ đó suy ra 123/456< 456/789
k nha
Đặt A = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2015!}\)
A < \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2014.2015}\)
A < \(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2014}-\frac{1}{2015}\)
A < \(2-\frac{1}{2015}\)< 2 < \(2\left(\frac{135^2+136}{136^2-135}\right)\)
=> A < \(2\left(\frac{135^2+136}{136^2-135}\right)\)(Đpcm)
a) \(A=\frac{135}{135.136-1}\) và \(B=\frac{136}{136.137-1}\)
\(A=\frac{1}{136-1}=\frac{1}{135}\) \(B=\frac{1}{137-1}=\frac{1}{136}\)
Vì \(\frac{1}{136}\)< \(\frac{1}{135}\)nên A > B.
a, A = \(\frac{136-1}{\left(136-1\right)136-1}\) = \(\frac{136-1}{136^2-136-1}\) B=\(\frac{136}{136\left(136+1\right)-1}\)=\(\frac{136}{136^2+136-1}\)
x=136, A-B =\(\frac{x-1}{x^2-x-1}\)-\(\frac{x}{x^2+x-1}\) =\(\frac{x^3+x^2-x-x^2-x+1-x^3+x^2+x}{\left(x^2-1\right)^2-x^2}\)=\(\frac{x^2-x+2}{\left(x^2-1\right)^2-x^2}\)<0
=> A<B
b,A = \(\frac{456-333}{456}\)= 1-333/456 B=\(\frac{789-333}{789}\)= 1-333/789
=> A>B
c, 3/14<3/13<3/12<3/11<3/10 <2/5
M = 3/10+3/11+3/12+3/13+3/14 < 2/5 x5 = 2= N