Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^{250}=\left(2^2\right)^{250}=2^{500}=\left(2^5\right)^{100}=32^{100}\)
Vì \(32^{100}>25^{100}\)nên \(4^{250}>25^{100}\)
\(A=\left(\frac{1}{2^2}-1\right)\times\left(\frac{1}{3^2}-1\right)\times...\times\left(\frac{1}{100^2}-1\right)\)
\(=-\left(1-\frac{1}{2^2}\right)\times\left(1-\frac{1}{3^2}\right)\times...\times\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{\left(2^2-1\right)\times\left(3^2-1\right)\times...\times\left(100^2-1\right)}{2^2\times3^2\times...\times100^2}\)
\(=-\frac{\left(1\times3\right)\times\left(2\times4\right)\times...\times\left(99\times101\right)}{2^2\times3^2\times...\times100^2}\)
\(=-\frac{\left(1\times2\times...\times99\right)\times\left(3\times4\times...\times101\right)}{\left(2\times3\times...\times100\right)\times\left(2\times3\times...\times100\right)}\)
\(=-\frac{1\times101}{100\times2}=-\frac{101}{200}< -\frac{1}{2}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{80}{81}\cdot\frac{99}{100}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot...\cdot\frac{8.10}{9.9}\cdot\frac{9.11}{10.10}\)
\(B=\frac{\left(1\cdot2\cdot...\cdot8\cdot9\right).\left(3\cdot4\cdot...\cdot10\cdot11\right)}{\left(2\cdot3\cdot..\cdot9\cdot10\right).\left(2\cdot3\cdot...\cdot9\cdot10\right)}\)
\(B=\frac{1\cdot2\cdot...\cdot8\cdot9}{2\cdot3\cdot...\cdot9\cdot10}\cdot\frac{3\cdot4\cdot...\cdot10\cdot11}{2\cdot3\cdot...\cdot9\cdot10}\)
\(B=\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
Vì 20 < 21 nên 11/20 > 11/21
Vậy .....
bạn vào link này nè:https://olm.vn/hoi-dap/question/980572.html
\(\frac{72}{145}< \frac{72}{144}=\frac{1}{2}\)
\(\frac{250}{499}>\frac{250}{500}=\frac{1}{2}\)
\(\Rightarrow\frac{72}{145}< \frac{250}{499}\)
Ta có A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2 + 22 + 23 + 24 + ... + 2101
Khi đó 2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)
=> A = 2101 - 1
Vì 2101 - 1 < 2101
=> A < B
Vậy A < B
A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101
=> A = 2A - A
= 2 + 22 + 23 + ... + 2101 - ( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101 - 1 - 2 - 22 - 23 - ... - 2100
= 2101 - 1 < 2101
=> A < B
Ta có: \(\frac{n}{2n+3}< \frac{n+2}{2n+3}\)
Mà \(\frac{n+2}{2n+3}< \frac{n+2}{2n+1}\)
=>\(\frac{n}{2n+3}< \frac{n+2}{2n+1}\)
Vậy \(\frac{n}{2n+3}< \frac{n+2}{2n+1}\)
Này, sau viết đề có tâm tí nhé. Nói thẳng, ko hiểu ''---'' của bn là j ?
Làm bài này, lớp 6 nên làm cách quy đồng cho dễ
Ta có : \(\frac{241}{250}\)và \(\frac{362}{357}\)
Ta được : \(\frac{241}{250}=\frac{86037}{89250}\) và \(\frac{362}{357}=\frac{90500}{89250}\)
Vì \(86037< 90500\)Mà \(\frac{86037}{89250}< \frac{90500}{89250}\)
Suy ra : \(\frac{241}{250}< \frac{362}{357}\)
2250 > 3100
Ta có :
`2^250 = ( 2^2 )^{125} = 4^{125}`
Do `3^{100} < 4^{100}<4^{125} => 3^{100}<4^{125}=>2^{250}>3^{100}`
Vậy `2^{250}>3^{100}`