Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm được câu b )
1990 = ( 100 + 99 ) . 10
= [ 100 + ( 100 - 1 ) ] . 10
= 1000 + 1000 - 10
= 2000 - 10
Số 19911991....1991000....000 chia hết cho 2000 ( áp dụng tính chất chia hết cho 1000 và 2 )
Tiếp đó thì số đó còn lại 19911991...1991000... chia hết cho 10 ( áp dụng tính chất chia hết cho 10 ) nên có tồn tại số có dạng 19911991 ... 000 ... 000 chia hết cho 1990
\(10^{2009}-1=99....99999\)(2009 số 9)
mà 99.....99999 \(⋮\)cho 3 và 9
vậy...........
Ta có:
10 1 (mod 9)
=> 102009 12009 (mod 9)
=> 102009 1 (mod 9)
=> 102009 chia 9 dư 1 nên trừ 1 chia hết cho 9
Mà 9 chia hết cho 3 nên số trên cũng chia hết cho 3
a) Xét 2017 số: 2015;20152015;...
Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)
=> Hiệu của a và b chia hết cho 2016 hay:
a-b=20152015...2015000chia hết cho 2016 (đpcm)
19871987..........198700...00=1987...1987.100...0(k chữ số 0)
ta xét 2018 số 1987;19871987;....19871987
trong 2018 số đã cho sẽ có 2 số chia 2017 cùng số dư
đặt 2 số đó là 1987..1987(n lần 1987);1987...1987(m lần 1987)
=>1987...1987-1987..1987=1987...198700..0(m-n chữ số 0)
=>1987..1987.100...0 chia hết cho 2017(m-n chữ số 0)
vì (100...0;2017)=1=>1987...1987 chia hết cho 2017
=>1987..198700...0 chia hết cho 2017
=>đpcm
Xét 2018 số sau: 1987; 19871987; ....; 19871987.....1987
Chia các số đó cho 2017, số dư có thể là 0; 1; 2; ...2016
từ 0 đến 2016 có 2017 số
Theo Nguyên lí Dirichlê, tồn tại ít nhất 2 trong 2018 số trên có cùng số dư khi chia cho 2017 => hiệu hai số đó chia hết cho 2017
Giả sử là 19871987..1987 (có m số 1987); và 19871987....1987 (có n số 1987) (m > n)
=> Hiệu của chúng bằng 19871987...198700..0 (có 4.n chữ số 0) chia hết cho 2017