K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19871987..........198700...00=1987...1987.100...0(k chữ số 0)

ta xét 2018 số 1987;19871987;....19871987

trong 2018 số đã cho sẽ có 2 số chia 2017 cùng số dư

đặt 2 số đó là 1987..1987(n lần 1987);1987...1987(m lần 1987)

=>1987...1987-1987..1987=1987...198700..0(m-n chữ số 0)

=>1987..1987.100...0 chia hết cho 2017(m-n chữ số 0)

vì (100...0;2017)=1=>1987...1987 chia hết cho 2017

=>1987..198700...0 chia hết cho 2017

=>đpcm

3 tháng 9 2015

Xét 2018 số sau: 1987; 19871987; ....; 19871987.....1987

Chia các số đó cho 2017, số dư có thể là 0; 1; 2; ...2016

từ 0 đến 2016 có 2017 số

Theo Nguyên lí Dirichlê, tồn tại ít nhất 2 trong 2018 số trên có cùng số dư khi chia cho 2017 => hiệu hai số đó chia hết cho 2017

Giả sử là 19871987..1987 (có m số 1987); và 19871987....1987 (có n số 1987)  (m > n)

=> Hiệu của chúng bằng 19871987...198700..0 (có  4.n chữ số 0) chia hết cho 2017

2 tháng 9 2015

Không rõ là bao nhiêu số 1987 lặp lại và bao nhiêu số 0 lặp lại, ví dụ số 19870 thì không chia hết cho 2017

2 tháng 9 2015

Đề thiếu             

18 tháng 6 2016

a) Xét 2017 số: 2015;20152015;...

Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)

=> Hiệu của a và b chia hết cho 2016 hay:

a-b=20152015...2015000chia hết cho 2016 (đpcm)

19 tháng 2 2017

20162016...201600...000 chia het cho 2017

25 tháng 12 2016

tôi chịu

 

7 tháng 2 2016

bai toan nay kho

23 tháng 12 2015

nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017

và dãy 2015 só bắt đầu từ A+2 đều là hợp số :

A+2;A+3;...;A+2015;A+2015;A+2017

bởi vì A+2 chia hết cho 2

A+3 chia hết cho 3

.......

A+2016 chia hết 2016

A+2017 chia hết 2017 ( ĐPCM)

tick nhé

17 tháng 3 2023

Để chứng minh rằng tồn tại một số có dạng 20232023...2023 chia hết cho 19, ta sẽ chứng minh rằng tồn tại một số nguyên n sao cho số nguyên s có dạng sau chia hết cho 19:

s = 20232023...2023 (n chữ số 2023)

Ta có thể biểu diễn s dưới dạng:

s = 2023 x 10⁰ + 2023 x 10¹ + 2023 x 10² + ... + 2023 x 10^(n-1)

= 2023 x (10⁰ + 10¹ + 10² + ... + 10^(n-1))

Để dễ dàng chứng minh, ta sẽ tính tổng sau đây:

10⁰ + 10¹ + 10² + ... + 10^(n-1) = (10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1) + n

= 111...1 (n số 1) + n

= (n + 1) x 111...1 (n số 1)

Do đó:

s = 2023 x (n + 1) x 111...1 (n số 1)

Ta có thể dễ dàng thấy rằng 19 chia hết cho 2023, do đó ta chỉ cần chứng minh rằng (n + 1) x 111...1 (n số 1) chia hết cho 19.

Ta có:

111...1 (n số 1) = (10⁰ + 10¹ + 10² + ... + 10^(n-1)) / 9

= [(10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1)] / 9

= [(n + 1) x 111...1 (n số 1)] / 9

Do đó:

s = 2023 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / 9

= 19 x 1064819 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / (19 x 9)

Như vậy, ta chỉ cần chọn một số nguyên n sao cho (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì 19 là số nguyên tố và không chia hết cho 3, nên ta có thể chọn n = 18, để (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì vậy, tồn tại một số có dạng 20232023...2023 (18 chữ số 2023) chia hết cho 19.

17 tháng 3 2023

cảm ơn bạn nghen