Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{x}{6}-\frac{1}{2}=\frac{1}{y}\)
\(\Rightarrow\frac{x}{6}-\frac{3}{6}=\frac{1}{y}\)
\(\Rightarrow\frac{x-3}{6}=\frac{1}{y}\)
\(\Rightarrow\left(x-3\right)y=6\)
Ta có bảng sau:
...
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
=> \(\frac{a+b}{ab}=\frac{1}{ab}\)=> a+b=1 => a,b là số nguyên sao cho a+b=1
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
\(\frac{b}{ab}+\frac{a}{ab}=\frac{1}{ab}\)
\(\frac{b+a}{ab}=\frac{1}{ab}\)
\(\Rightarrow b+a=1\)
Vậy các giá trị nguyên của a,b phụ thuộc vào b + a = 1
Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=> \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
=> \(\frac{b-a}{ab}=\frac{1}{a-b}\)
=> (b-a)(a-b)=ab.1
=> (b-a)(a-b)=ab (1)
Mà b-a và a-b trái dấu
Nên (b-a)(a-b)= -ab (2)
Từ (1), (2)=>không có cặp số nguyên x,y thỏa mãn