Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
a) P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x)
= 7x2 . x2 + 7x2 . (-5x) + 7x2 . 2 – [5x. x3 + 5x . (-7x2) + 5x . 3x]
= 7. (x2 . x2) + [7.(-5)] . (x2 . x) + (7.2).x2 – {5. (x.x3) + [5.(-7)]. (x.x2) + (5.3).(x.x)}
= 7x4 + (-35). x3 + 14x2 – [ 5x4 + (-35)x3 + 15x2 ]
= 7x4 + (-35). x3 + 14x2 - 5x4 + 35x3 - 15x2
= (7x4 – 5x4) + [(-35). x3 + 35x3 ] + (14x2 - 15x2 )
= 2x4 + 0 - x2
= 2x4 – x2
b) Thay x = \( - \dfrac{1}{2}\) vào P(x), ta được:
P(\( - \dfrac{1}{2}\)) = 2. (\( - \dfrac{1}{2}\))4 – (\( - \dfrac{1}{2}\))2 \))
\(\begin{array}{l} = 2.\dfrac{1}{{16}} - \dfrac{1}{4} \\ = \dfrac{1}{8} - \dfrac{{2}}{8} \\ = \dfrac{-1}{8} \end{array}\)
\(a,N\left(x\right)=x^2+3x^4-2x-x^2+2x^3=3x^4+2x^3+\left(x^2-x^2\right)-2x\\ =3x^4+2x^3-2x\\ P\left(x\right)=-8+5x-6x^3-4x+6=-6x^3+\left(5x-4x\right)+\left(-8+6\right)\\ =-6x^3+x-2\)
Bậc của N(x) là 4
Bậc của P(x) là 3
\(b,P\left(x\right)+N\left(x\right)=3x^4+2x^3-2x-6x^3+x-2\\ =3x^4+\left(2x^3-6x^3\right)+\left(-2x+x\right)-2\\ =3x^4-4x^3-x-2\)
\(c,B\left(x\right)=-2x^2\left(x^3-2x+5x^2-1\right)\\ =\left(-2x^2\right).x^3+\left(-2x^2\right).\left(-2x\right)+\left(-2x^2\right).5x^2+\left(-2x^2\right).\left(-1\right)\\ =-2x^5+4x^3-10x^4+2x^2\\ =-2x^5-10x^4+4x^3+2x^2\)
a) A(x) = 2x3 + 5 + x2 - 3x - 5x3 - 4
= 2x3 - 5x3 + x2 - 3x + 5 - 4
= -3x3 + x2 - 3x + 1
B(x) = -3x4 - x3 + 2x2 + 2x + x4 - 4 - x2
= -3x4 + x4 - x3 + 2x2 - x2 + 2x - 4
= -2x4 - x3 + x2 + 2x - 4
b)
H(x) = A(x) - B(x)
H(x) = (-3x3 + x2 - 3x + 1) - (-2x4 - x3 + x2 + 2x - 4)
= -3x3 + x2 - 3x + 1 + 2x4 + x3 - x2 - 2x + 4
= 2x4 - 3x3 + x3 + x2 - x2 - 3x - 2x + 1 + 4
= 2x4 - 2x3 -5x + 5
`a,`
`P(x)=2x^3-2x+x^2-x^3+3x+2`
`= (2x^3-x^3)+x^2+(-2x+3x)+2`
`= x^3+x^2+x+2`
`b,`
`H(x)+Q(x)=P(x)`
`-> H(x)=P(x)-Q(x)`
`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`
`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`
`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`
`= 2x^2+2x+1`
Vậy, `H(x)=2x^2+2x+1.`
a.
\(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=x^3-x^2-x+1\)
b.
\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)
\(\Rightarrow H\left(x\right)=2x^2+2x+1\)
a: \(C\left(x\right)=x^3+3x^2-x+6\)
\(D\left(x\right)=-x^3-2x^2+2x-6\)
b: Bậc của C(x) là 3
Hệ số tự do của D(x) là -6
c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)
d: \(C\left(x\right)+D\left(x\right)=x^2+x\)
a.
b. Bậc của C(x) là 3
Hệ số tự do của D(x) là -6
c.
d.
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)
b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)
c: \(M\left(x\right)=-3x^4y^3+10+xy\)
\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(M=-2x^4y^3+7xy^2\)
\(\text{Bậc là:}7\)
\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)
\(P\left(x\right)=x^3+x+x^2+2\)
\(P\left(x\right)=x^3+x^2+x+2\)
\(\text{Bậc là:}3\)
\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)
\(M=-3x^4y^3+10+xy\)
\(\text{Bậc là:}7\)
Ta có:
x3(x+2) – x(x3 + 23) – 2x(x2 – 22)
= x3 . x + x3 . 2 – (x . x3 + x . 23) – ( 2x . x2 – 2x . 22)
= x4 + 2x3 – (x4 + 8x ) – (2x3 – 8x)
= x4 + 2x3 – x4 – 8x – 2x3 + 8x
= (x4 – x4) + (2x3 – 2x3) + (-8x + 8x)
= 0