K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

1+1/A+1/a2+1/a3+1+.../an+1

=1(1/A/a2/a3/...an)

=1.(1/a1+2+3+...+n)

=1.(1/a6+...+n)

=a6+...+n

 

14 tháng 4 2023

b,     B        =                       \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\)  + \(\dfrac{1}{2^3}\) -   \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

\(\times\)  B       =                 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

\(\times\) B + B  =                1  -  \(\dfrac{1}{2^{100}}\)

3B             =              ( 1 - \(\dfrac{1}{2^{100}}\)

             B =               ( 1 - \(\dfrac{1}{2^{100}}\)) : 3

14 tháng 4 2023

       A              =          1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\) 

A\(\times\)  3             =   3 +  1 + \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+  \(\dfrac{1}{3^{n-1}}\) 

\(\times\) 3 - A        = 3 - \(\dfrac{1}{3^n}\)

       2A           = 3  - \(\dfrac{1}{3^n}\)

         A           = ( 3 - \(\dfrac{1}{3^n}\)) : 2

DD
25 tháng 10 2021

a) \(A=1+3+3^2+...+3^{100}\)

\(3A=3+3^2+3^3+...+3^{101}\)

\(3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-1\)

\(A=\frac{3^{101}-1}{2}\)

b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...-2^3+2^2-2+1\)

\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...-2^4+2^3-2^2+2\)

\(B+2B=\left(2^{100}-2^{99}+...-2+1\right)+\left(2^{101}-2^{100}+...-2^2+2\right)\)

\(3B=2^{101}+1\)

\(B=\frac{2^{101}+1}{3}\)

25 tháng 4 2016

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(A=2A-A=2-\frac{1}{2^{2011}}=\frac{2^{2012}-1}{2^{2011}}\)

25 tháng 4 2016

Nhầm

\(A=2A-A=2-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)
 

8 tháng 4 2023

       A =          1 +   \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)  

3\(\times\) A  =  3  +  \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)

3A - A =  3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\) 

    2A  = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)

      A  = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2

     A =   \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2

     A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)

 

 

8 tháng 4 2023

   B   =      \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

2B    =  2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\)\(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

2B + B = 2 - \(\dfrac{1}{2^{100}}\)

  3B     =  2 - \(\dfrac{1}{2^{100}}\)

    B     =   ( 2 - \(\dfrac{1}{2^{100}}\)): 3

    B     =     \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3

    B     = \(\dfrac{2^{101}-1}{3.2^{100}}\)

9 tháng 3 2016

tự làm nhé,dễ lắm

27 tháng 4 2017

bài này khó đấy

16 tháng 3 2018

A = 1 + 1/22+1/23+...+1/22015

(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016

A = 2 *( 1 -1/22016) = 2 -1/22015

19 tháng 4 2018

A = 1 + 1/22+1/23+...+1/22015

(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016

A = 2 *( 1 -1/22016) = 2 -1/22015

\(A=\frac{3^{100}-1}{2}\)

5 tháng 9 2016

hình như sai đề bài ấy nhỉ

14 tháng 6 2015

\(\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a-1}\)

23 tháng 6 2020

a) \(A=\left(-m+n-p\right)-\left(-m-n-p\right)\)

\(=-m+n-p+m+n+p=2n\)

Vậy A=2n

b) Ta có A=2n

Thay số vào ta được A=2.(-1)=-2

Vậy A=-2 khi n=-1