Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số chính phương thì :
\(n^2-n+13=k^2\)\(\left(k\inℕ\right)\)
\(\Leftrightarrow4n^2-4n+52=4k^2\)
\(\Leftrightarrow\left(2n\right)^2-2\cdot2n\cdot1+1-4k^2+51=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2k\right)^2=-51\)
\(\Leftrightarrow\left(2n-2k-1\right)\left(2n+2k-1\right)=-51\)
Dễ thấy \(2n-2k-1< 2n+2k-1\)( vì \(k\inℕ\))
TH1 : \(\hept{\begin{cases}2n-2k-1=-51\\2n+2k-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-25\\n+k=1\end{cases}\Leftrightarrow\hept{\begin{cases}n=-12\\k=13\end{cases}}}}\)
TH2 : \(\hept{\begin{cases}2n-2k-1=-1\\2h+2k-1=51\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=0\\n+k=26\end{cases}\Leftrightarrow\hept{\begin{cases}n=13\\k=13\end{cases}}}}\)
TH3 : \(\hept{\begin{cases}2n-2k-1=-3\\2n+2k-1=17\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-1\\n+k=9\end{cases}\Leftrightarrow\hept{\begin{cases}n=4\\k=5\end{cases}}}}\)
TH4 ; \(\hept{\begin{cases}2n-2k-1=-17\\2n+2k-1=3\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-8\\n+k=2\end{cases}\Leftrightarrow\hept{\begin{cases}n=-3\\k=5\end{cases}}}}\)
Vậy....
Đặt \(A=n^2-n+13=k^2\)
\(\Rightarrow4n^2-4n+52=4k^2\)
\(\Rightarrow\left(4n^2-4n+1\right)+51=4k^2\)
\(\Rightarrow\left(2k\right)^2-\left(2n-1\right)^2=51\)
\(\Rightarrow\left(2k-2n+1\right)\left(2k+2n-1\right)=51\)
Bạn xét ước của 51 rồi lập bảng nốt nha!
\(B=n^2-2.n.\dfrac{1}{2}+\dfrac{1}{4}+12,25=\)
\(=\left(n-\dfrac{1}{2}\right)^2+12,25\ge12,25\)
B là số chính phương
\(\Rightarrow n^2-n+13=p^2\)
\(\Leftrightarrow4n^2-4n+52=4p^2\)
\(\Leftrightarrow\left(2n-1\right)^2+51=4p^2\)
\(\Leftrightarrow4p^2-\left(2n-1\right)^2=51\)
\(\Leftrightarrow\left(2p-2n+1\right)\left(2p+2n-1\right)=51\)
\(\Rightarrow\left(2p-2n+1\right)\) và \(\left(2p+2n-1\right)\) phải là ước của 51
\(=\left\{-51;-17;-3-1;1;3;17;51\right\}\)
Ta có các trường hợp
\(\left\{{}\begin{matrix}2p-2n+1=-51\\2p+2n-1=-1\end{matrix}\right.\) giải hệ để tìm n
Tương tự với các trường hợp khác
\(2p-2n+1\) | \(51\) | \(1\) | \(-51\) | \(-1\) | \(17\) | \(3\) | \(-17\) | \(-3\) |
\(2p+2n-1\) | \(1\) | \(51\) | \(-1\) | \(-51\) | \(3\) | \(17\) | \(-3\) | \(-17\) |
\(p\) | \(13\) | \(13\) | \(-13\) | \(-13\) | \(5\) | \(5\) | \(-5\) | \(-5\) |
\(n\) | \(-12\) | \(13\) | \(13\) | \(-12\) | \(-3\) | \(4\) | \(4\) | \(-3\) |
Đặt
\(a^2=n^2-n+2\)
Ta có:
\(\Rightarrow\left(n-1\right)^2< a^2=n^2-n+2< \left(n+1\right)^2\)
\(\Rightarrow n^2-n+2=n^2\)
\(\Leftrightarrow n=2\)
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
\(n^2-n+13=m^2\)
\(\Leftrightarrow4n^2-4n+52=4m^2\)
\(\Leftrightarrow\left(2n-1\right)^2+51=4m^2\)
\(\Leftrightarrow\left(2m-2n+1\right)\left(2m+2n-1\right)=51=1.51=3.17\)
Xét bảng:
thầy sai đâu đấy
\(\left(2n-1\right)^2+51=4m^2\Leftrightarrow\left(2n-1\right)^2-4m^2=-51\)
\(\Leftrightarrow\left(2n-1-2m\right)\left(2n-1+2n\right)=-51\)
vì \(2n-1+2m>2n-1-2m\)
\(\left(2n-1-2m\right)\left(2n-1+2n\right)=1.\left(-51\right)=\left(-51\right).1=3.\left(-17\right)=\left(-17\right).3\)
TH1 : \(\hept{\begin{cases}2n-1-2m=-51\\2n-1+2m=1\end{cases}}\)chứ ạ ?
rồi xét TH còn lại, mong thầy giải đáp giúp, có gì sai thầy cho em xin lỗi