K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

Bấm nghiệm đi

13 tháng 8 2018

Thành Vinh Lê . Có ẩn n thì bấm nghiệm kiểu j ạ. Giúp vs ạ

13 tháng 8 2019

a, Với n = 1 thì \(n^3-n+2=1^3-1+2=2\)

=> Không phải là số chính phương

Với n = 2 thì \(n^3-n+2=2^3-2+2=8-2+2=8\)

=> Không phải là số chính phương

Với n > 2 thì \(n^3-n+2\)không phải là số chính phương vì \(\left[n-1\right]^2< n^3-\left[n-2\right]< n^2\)

b, Với n = 1 thì \(n^4-n+2=1^4-1+2=2\)

=> Không phải là số chính phương

Với n = 2 thì \(n^4-n+2=2^4-2+2=16=4^2\)=> Là số chính phương

Với n > 2 thì \(\left[n^2-1\right]^2< n^4-\left[n-2\right]< \left[n^2\right]^2\)

=> Không phải là số chính phương

Vậy n = 2

12 tháng 3 2021

Đặt

\(a^2=n^2-n+2\)

Ta có:

\(\Rightarrow\left(n-1\right)^2< a^2=n^2-n+2< \left(n+1\right)^2\)

\(\Rightarrow n^2-n+2=n^2\)

\(\Leftrightarrow n=2\)

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
14 tháng 8 2021

b, nếu n=0 thì n4 -  n  +2=2(loại)

nếu n=1 thì n4 -  n  +2=2(loại)

nếu n=2 thì n4 -  n  +2=16(nhận)

nếu n>=3 thì n4-n+2>(n2)2-2n+1=(n2-1)2  

n4-n+2<(n2)2 (vì n>=3 nên -n+2<0)

suy ra (n2-1)2  <n4-n+2<(n2)2 suy ra n>=3 ko là số cp

vậy n=2

10 tháng 8 2017

Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)

=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7

Đến đây liệt kê ước của - 7 rồi xét các TH !!!

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3