K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Đặt

\(a^2=n^2-n+2\)

Ta có:

\(\Rightarrow\left(n-1\right)^2< a^2=n^2-n+2< \left(n+1\right)^2\)

\(\Rightarrow n^2-n+2=n^2\)

\(\Leftrightarrow n=2\)

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
10 tháng 8 2017

Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)

=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7

Đến đây liệt kê ước của - 7 rồi xét các TH !!!

5 tháng 4 2019

Để A là số chính phương thì :

\(n^2-n+13=k^2\)\(\left(k\inℕ\right)\)

\(\Leftrightarrow4n^2-4n+52=4k^2\)

\(\Leftrightarrow\left(2n\right)^2-2\cdot2n\cdot1+1-4k^2+51=0\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2k\right)^2=-51\)

\(\Leftrightarrow\left(2n-2k-1\right)\left(2n+2k-1\right)=-51\)

Dễ thấy \(2n-2k-1< 2n+2k-1\)( vì \(k\inℕ\))

TH1 : \(\hept{\begin{cases}2n-2k-1=-51\\2n+2k-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-25\\n+k=1\end{cases}\Leftrightarrow\hept{\begin{cases}n=-12\\k=13\end{cases}}}}\)

TH2 : \(\hept{\begin{cases}2n-2k-1=-1\\2h+2k-1=51\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=0\\n+k=26\end{cases}\Leftrightarrow\hept{\begin{cases}n=13\\k=13\end{cases}}}}\)

TH3 : \(\hept{\begin{cases}2n-2k-1=-3\\2n+2k-1=17\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-1\\n+k=9\end{cases}\Leftrightarrow\hept{\begin{cases}n=4\\k=5\end{cases}}}}\)

TH4 ; \(\hept{\begin{cases}2n-2k-1=-17\\2n+2k-1=3\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-8\\n+k=2\end{cases}\Leftrightarrow\hept{\begin{cases}n=-3\\k=5\end{cases}}}}\)

Vậy....

5 tháng 4 2019

Đặt \(A=n^2-n+13=k^2\)

\(\Rightarrow4n^2-4n+52=4k^2\)

\(\Rightarrow\left(4n^2-4n+1\right)+51=4k^2\)

\(\Rightarrow\left(2k\right)^2-\left(2n-1\right)^2=51\)

\(\Rightarrow\left(2k-2n+1\right)\left(2k+2n-1\right)=51\)

Bạn xét ước của 51 rồi lập bảng nốt nha!