K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2022

theo bezout ta có A \(⋮\) B \(\Leftrightarrow\) A(x=1) = 0

\(\Leftrightarrow\) 13 + 12 + a - 1 = 0

                   1 + a = 0

                         a = -1

Với a = -1 thì A chia hết cho B 

8 tháng 8 2019

a,gọi f(x)=x3+ax+b

theo đb có: f(x)=(x+1)t(x)+7

=> f(-1)=7=> -1-a+b=7<=>b-a=8(1)

f(x)=(x-3)h(x)-3=> f(3)=-3=> 27+3a+b=3<=> 3a+b=-24(2)

từ (1);(2)=> a=-8;b=0

NV
24 tháng 3 2019

Bạn có nhầm đề không? Nếu chỉ có như vậy thì có vô số đa thức P(x) thỏa mãn với P(x) dạng:

\(P\left(x\right)=x^4+\left(a-3\right)x^3+\left(3-3a\right)x^2+\left(3a-1\right)x-a\)

Với a nguyên bất kì

Bạn có thể thay thử vài giá trị của a và lấy P(x) chia \(\left(x-1\right)^3\) sẽ thấy

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

6 tháng 4 2020

Giả sử P(x) là thương của phép chia \(x^3+ax^2+5x+3\) cho \(x^2+2x+3\).

Khi đó: \(x^3+ax^2+5x+3=\left(x^2+2x+3\right).P\left(x\right)\)

NX: P(x) là biểu thức bậc nhất. có dạng \(bx+c\) .

Nên \(x^3+ax^2+5x+3=\left(x^2+2x+3\right).\left(bx+c\right)\)

\(\Leftrightarrow x^3+ax^2+5x+3=bx^3+\left(c+2b\right)x^2+\left(2c+3b\right)x+3c\)

\(\Rightarrow\left\{{}\begin{matrix}b=1\\c=1\end{matrix}\right.\). Đồng nhất hệ số, ta có: \(a=c+2b=1+2.1=3\)

Vậy \(a=3\)

17 tháng 7 2015

phải đặt phép chia nhưng OLM ko có