Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có nhầm đề không? Nếu chỉ có như vậy thì có vô số đa thức P(x) thỏa mãn với P(x) dạng:
\(P\left(x\right)=x^4+\left(a-3\right)x^3+\left(3-3a\right)x^2+\left(3a-1\right)x-a\)
Với a nguyên bất kì
Bạn có thể thay thử vài giá trị của a và lấy P(x) chia \(\left(x-1\right)^3\) sẽ thấy
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Giả sử P(x) là thương của phép chia \(x^3+ax^2+5x+3\) cho \(x^2+2x+3\).
Khi đó: \(x^3+ax^2+5x+3=\left(x^2+2x+3\right).P\left(x\right)\)
NX: P(x) là biểu thức bậc nhất. có dạng \(bx+c\) .
Nên \(x^3+ax^2+5x+3=\left(x^2+2x+3\right).\left(bx+c\right)\)
\(\Leftrightarrow x^3+ax^2+5x+3=bx^3+\left(c+2b\right)x^2+\left(2c+3b\right)x+3c\)
\(\Rightarrow\left\{{}\begin{matrix}b=1\\c=1\end{matrix}\right.\). Đồng nhất hệ số, ta có: \(a=c+2b=1+2.1=3\)
Vậy \(a=3\)
theo bezout ta có A \(⋮\) B \(\Leftrightarrow\) A(x=1) = 0
\(\Leftrightarrow\) 13 + 12 + a - 1 = 0
1 + a = 0
a = -1
Với a = -1 thì A chia hết cho B