Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé
Em có cách này nhưng không biết có đúng hay không!Nếu sai mong ah/chị thông cảm cho ạ.
Do đa thức \(x^3+ax^2+5x+3\)chia hết cho đa thức \(x^2+2x+3\).
Đặt \(P\left(x\right)=x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(x-b\right)\)
\(=x^3+2x^2+3x-bx^2-2xb-3b\)
\(=x^3+\left(2-b\right)x^2+\left(3-2b\right)x-3b\)
Đồng nhất hệ số ta được: \(\hept{\begin{cases}2-b=a\\3-2b=5\\-3b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2-\left(-1\right)=a\\b=-1\end{cases}}\Leftrightarrow a=3\)
Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)
\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)
Vì đẳng thức trên đúng với mọi x thuộc R
=> Với x = -4
\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)
\(\Rightarrow32-4a-4=0\)
\(\Rightarrow28=4a\Leftrightarrow a=7\)
Các bài khác tương tự thôi
b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)
=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)
=> Q(x) có bậc 1
=> \(Q_{\left(x\right)}=bx+c\)
=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)
=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)
=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)
Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)
=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)
Đồng nhất hệ số => a = 3
Giả sử P(x) là thương của phép chia \(x^3+ax^2+5x+3\) cho \(x^2+2x+3\).
Khi đó: \(x^3+ax^2+5x+3=\left(x^2+2x+3\right).P\left(x\right)\)
NX: P(x) là biểu thức bậc nhất. có dạng \(bx+c\) .
Nên \(x^3+ax^2+5x+3=\left(x^2+2x+3\right).\left(bx+c\right)\)
\(\Leftrightarrow x^3+ax^2+5x+3=bx^3+\left(c+2b\right)x^2+\left(2c+3b\right)x+3c\)
\(\Rightarrow\left\{{}\begin{matrix}b=1\\c=1\end{matrix}\right.\). Đồng nhất hệ số, ta có: \(a=c+2b=1+2.1=3\)
Vậy \(a=3\)