K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2023

a) Δ��� Tam giác ABC vuông cân nên góc B= góc C = 45 độ

Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ

Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ

Vậy tam giác BEH vuông tại H

b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE

Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)

Tứ giác EFGH có EH//FG, EH=FG

=>tứ giác EFGH là hình bình hành 

Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật

Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông

Vậy EFGH là hình vuông

 

21 tháng 11 2023

a) Δ���ΔABC vuông cân nên �^=�^=45∘.B=C=45.

Δ���ΔBHE vuông tại H có ���^+�^=90∘BEH+B=90

Suy ra ���^=90∘−45∘=45∘BEH=9045=45 nên �^=���^=45∘B=BEH=45.

Vậy Δ���ΔBEH vuông cân tại �.H.

b) Chứng minh tương tự câu a ta được Δ���ΔCFG vuông cân tại G nên ��=��GF=GC và ��=��HB=HE

Mặt khác ��=��=��BH=HG=GC suy ra ��=��=��EH=HG=GF và ��EH // ��FG (cùng vuông góc với ��)BC)

Tứ giác ����EFGH có ��EH // ��,��=��FG,EH=FG nên là hình bình hành.

Hình bình hành ����EFGH có một góc vuông �^H nên là hình chữ nhật

Hình chữ nhật ����EFGH có hai cạnh kề bằng nhau ��=��EH=HG nên là hình vuông.

30 tháng 6 2017

Tam giác vuông FGC có \(\widehat{C}=45^0\) nên là tam giác vuông cân. Do đó FG = GC

Hình vuông

5 tháng 8 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì ΔABC vuông cân tại A nên ∠ B =  ∠ C = 45 0

Vì ΔBHE vuông tại H có  ∠ B =  45 0  nên ΔBHE vuông cân tại H.

Suy ra HB = HE

Vì ΔCGF vuông tại G, có  ∠ C =  45 0  nên ΔCGF vuông cân tại G

Suy ra GC = GF

Ta có: BH = HG = GC (gt)

Suy ra: HE = HG = GF

Vì EH // GF (hai đường thẳng cũng vuông góc với đường thắng thứ ba) nên tứ giác HEFG là hình bình hành (vì có một cặp cạnh đối song song bằng nhau);

Lại có  ∠ (EHG) = 90 0  nên HEFG là hình chữ nhật.

Mà EH = HG (chứng minh trên).

Vậy HEFG là hình vuông.

24 tháng 11 2023

1:

ΔABC vuông cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=45^0\)

EH\(\perp\)BC tại H

=>EH\(\perp\)HB tại H

=>ΔEHB vuông tại H

Xét ΔHEB vuông tại H có \(\widehat{HBE}=45^0\)

nên ΔHEB vuông cân tại H

FG\(\perp\)BC tại G

=>FG\(\perp\)GC tại G

=>ΔFGC vuông tại G

Xét ΔFCG vuông tại G có \(\widehat{GCF}=45^0\)

nên ΔFCG vuông cân tại G

2: EH\(\perp\)BC

FG\(\perp\)BC

Do đó: EH//FG

EH=HB

HB=HG=GC

GF=GC

Do đó; EH=HB=GH=CG=GF

Xét tứ giác EHGF có

EH//FG

EH=FG

Do đó: EHFG là hình bình hành

Hình bình hành EHFG có \(\widehat{EHG}=90^0\)

nên EHFG là hình chữ nhật

Hình chữ nhật EHFG có GH=GF

nên EHFG là hình vuông

1 tháng 2 2018

a) Ta thấy ngay \(\Delta ABE=\Delta ACD\)  (Hai cạnh góc vuông)

b) Do \(\Delta ABE=\Delta ACD\Rightarrow\widehat{ABE}=\widehat{ACD}\)

mà \(\widehat{ABE}=\widehat{MAC}\)  (Cùng phụ với góc BEA)

\(\Rightarrow\widehat{MAC}=\widehat{MCA}\) hay tam giác MAC cân tại M.

c) Xét tam giác vuông ADC: \(\widehat{MCA}=\widehat{MAC}\Rightarrow\widehat{MDA}=\widehat{MAD}\Rightarrow MD=MA\)

Vậy thì DM = MA = MC hay M là trung điểm DC.

Xét tam giácAIC có M là trung điểm DC, MK // DI nên MK là đường trung bình tam giác DIC.

Suy ra K là trung điểm IC.

d) Xét tam giác DIC có IM và DK là hai trung tuyến nên G là trọng tâm tam giác.

Gọi N là giao điểm của CG với DE thì DN = NI.

Áp dụng định lý Talet ta có:

\(\frac{MF}{DN}=\frac{CF}{CN}=\frac{FK}{NI}\) 

Mà DN = NI nên MF = FK.

30 tháng 10 2016

1. ta có AD = BC (gt)

mà DH = BF (gt)

=> AH =FC

xét ▲AHE và ▲FCG, có:

AE = CG (gt)

góc A = góc C (gt)

AH = FC (cmt)

=>▲AHE = ▲FCG (c.g.c)

=>HE = FG (2 cạnh t/ứ)

cmtt : HG = EF

Vậy EFGH là hbh (đpcm)

1 tháng 2 2018

Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo lời giải tại đây nhé.

18 tháng 4 2018

Bài 5:
Cho ABC vuông tại A, kẻ phân giác BM ( M AC), trên cạnh BC
lấy điểm E sao cho BE = AB
a) Chứng minh 2 tam giác BAM BEM .
b) Gọi F là giao điểm của đường thẳng ME và đường thẳng AB.
Chứng minh: FM = MC.
c) Chứng minh: AM < MC
d) Chứng minh AE // FC.