K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì ΔABC vuông cân tại A nên ∠ B =  ∠ C = 45 0

Vì ΔBHE vuông tại H có  ∠ B =  45 0  nên ΔBHE vuông cân tại H.

Suy ra HB = HE

Vì ΔCGF vuông tại G, có  ∠ C =  45 0  nên ΔCGF vuông cân tại G

Suy ra GC = GF

Ta có: BH = HG = GC (gt)

Suy ra: HE = HG = GF

Vì EH // GF (hai đường thẳng cũng vuông góc với đường thắng thứ ba) nên tứ giác HEFG là hình bình hành (vì có một cặp cạnh đối song song bằng nhau);

Lại có  ∠ (EHG) = 90 0  nên HEFG là hình chữ nhật.

Mà EH = HG (chứng minh trên).

Vậy HEFG là hình vuông.

24 tháng 11 2023

1:

ΔABC vuông cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=45^0\)

EH\(\perp\)BC tại H

=>EH\(\perp\)HB tại H

=>ΔEHB vuông tại H

Xét ΔHEB vuông tại H có \(\widehat{HBE}=45^0\)

nên ΔHEB vuông cân tại H

FG\(\perp\)BC tại G

=>FG\(\perp\)GC tại G

=>ΔFGC vuông tại G

Xét ΔFCG vuông tại G có \(\widehat{GCF}=45^0\)

nên ΔFCG vuông cân tại G

2: EH\(\perp\)BC

FG\(\perp\)BC

Do đó: EH//FG

EH=HB

HB=HG=GC

GF=GC

Do đó; EH=HB=GH=CG=GF

Xét tứ giác EHGF có

EH//FG

EH=FG

Do đó: EHFG là hình bình hành

Hình bình hành EHFG có \(\widehat{EHG}=90^0\)

nên EHFG là hình chữ nhật

Hình chữ nhật EHFG có GH=GF

nên EHFG là hình vuông

3 tháng 6 2017

Giải bài 84 trang 109 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

31 tháng 12 2018

A E F C D B

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt)

(theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu  ∆ABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật vừa là hình thoi).

16 tháng 6 2020

A B C F D E

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE ( gt ) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu \(\Delta ABC\) vuông tại A thì AEDF là hình chữ nhật ( vì là hình bình hành có một góc vuông )

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông ( vì vừa là hình chữ nhật, vừa là hình thoi )

13 tháng 11 2021

Xét tứ giác KHED có KD//EH

nên KHED là hình thang