Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy ngay \(\Delta ABE=\Delta ACD\) (Hai cạnh góc vuông)
b) Do \(\Delta ABE=\Delta ACD\Rightarrow\widehat{ABE}=\widehat{ACD}\)
mà \(\widehat{ABE}=\widehat{MAC}\) (Cùng phụ với góc BEA)
\(\Rightarrow\widehat{MAC}=\widehat{MCA}\) hay tam giác MAC cân tại M.
c) Xét tam giác vuông ADC: \(\widehat{MCA}=\widehat{MAC}\Rightarrow\widehat{MDA}=\widehat{MAD}\Rightarrow MD=MA\)
Vậy thì DM = MA = MC hay M là trung điểm DC.
Xét tam giácAIC có M là trung điểm DC, MK // DI nên MK là đường trung bình tam giác DIC.
Suy ra K là trung điểm IC.
d) Xét tam giác DIC có IM và DK là hai trung tuyến nên G là trọng tâm tam giác.
Gọi N là giao điểm của CG với DE thì DN = NI.
Áp dụng định lý Talet ta có:
\(\frac{MF}{DN}=\frac{CF}{CN}=\frac{FK}{NI}\)
Mà DN = NI nên MF = FK.
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
## Bài 1:
**a) Chứng minh rằng các tam giác AMQ, ANP vuông cân.**
* **Tam giác AMQ:**
* Ta có: $\widehat{MAQ} = 90^\circ$ (do d vuông góc với AM)
* $\widehat{AMQ} = \widehat{ABM}$ (cùng phụ với $\widehat{AMB}$)
* Mà $\widehat{ABM} = 45^\circ$ (do ABCD là hình vuông)
* Nên $\widehat{AMQ} = 45^\circ$
* Vậy tam giác AMQ vuông cân tại A.
* **Tam giác ANP:**
* Ta có: $\widehat{NAP} = 90^\circ$ (do d vuông góc với AM)
* $\widehat{ANP} = \widehat{ADN}$ (cùng phụ với $\widehat{AND}$)
* Mà $\widehat{ADN} = 45^\circ$ (do ABCD là hình vuông)
* Nên $\widehat{ANP} = 45^\circ$
* Vậy tam giác ANP vuông cân tại A.
**b) Gọi giao điểm của QM và NP là R. Gọi I, K là trung điểm của đoạn thẳng MQ, PN. Chứng minh rằng AIKR là hình chữ nhật**
* **Chứng minh AIKR là hình bình hành:**
* Ta có: I là trung điểm của MQ, K là trung điểm của PN.
* Nên IK là đường trung bình của hình thang MNPQ.
* Do đó IK // MN // PQ.
* Mà AI // KR (do AI là đường trung bình của tam giác AMQ, KR là đường trung bình của tam giác ANP)
* Vậy AIKR là hình bình hành.
* **Chứng minh AIKR là hình chữ nhật:**
* Ta có: $\widehat{IAK} = 90^\circ$ (do AI // KR và $\widehat{IAK}$ là góc vuông)
* Vậy AIKR là hình chữ nhật.
**c) Chứng minh rằng bốn điểm K,B,I,D thẳng hàng**
* **Chứng minh KB // ID:**
* Ta có: KB là đường trung bình của tam giác BCP, ID là đường trung bình của tam giác DQN.
* Nên KB // CP // DQ // ID.
* Vậy KB // ID.
* **Chứng minh KB = ID:**
* Ta có: KB = 1/2 CP, ID = 1/2 DQ.
* Mà CP = DQ (do ABCD là hình vuông)
* Nên KB = ID.
* **Kết luận:**
* Do KB // ID và KB = ID nên KBID là hình bình hành.
* Mà $\widehat{KBI} = 90^\circ$ (do KB // CP và $\widehat{KBI}$ là góc vuông)
* Vậy KBID là hình chữ nhật.
* Do đó bốn điểm K,B,I,D thẳng hàng.
## Bài 2:
**a) Chứng minh rằng BF = CE; BF ⊥ CE**
* **Chứng minh BF = CE:**
* Ta có: ABDE và ACGF là hình vuông.
* Nên AB = AE, AC = AF.
* Do đó BF = BC + CF = AB + AC = AE + AF = CE.
* **Chứng minh BF ⊥ CE:**
* Ta có: $\widehat{ABF} = 90^\circ$ (do ABDE là hình vuông)
* $\widehat{ACE} = 90^\circ$ (do ACGF là hình vuông)
* Nên $\widehat{ABF} + \widehat{ACE} = 180^\circ$.
* Do đó BF ⊥ CE.
**b) Tam giác MO O1 2 là tam giác vuông cân**
* **Chứng minh MO O1 2 là tam giác vuông:**
* Ta có: O1 là tâm hình vuông ABDE, O2 là tâm hình vuông ACGF.
* Nên O1O2 là đường trung trực của đoạn thẳng BC.
* Do đó MO1 = MO2.
* Mà $\widehat{MO1O2} = 90^\circ$ (do O1O2 là đường trung trực của BC)
* Vậy tam giác MO O1 2 là tam giác vuông tại O.
* **Chứng minh MO O1 2 là tam giác cân:**
* Ta có: MO1 = MO2 (chứng minh trên)
* Vậy tam giác MO O1 2 là tam giác cân tại M.
* **Kết luận:**
* Tam giác MO O1 2 là tam giác vuông cân tại O.
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Bài 5:
Cho ABC vuông tại A, kẻ phân giác BM ( M AC), trên cạnh BC
lấy điểm E sao cho BE = AB
a) Chứng minh 2 tam giác BAM BEM .
b) Gọi F là giao điểm của đường thẳng ME và đường thẳng AB.
Chứng minh: FM = MC.
c) Chứng minh: AM < MC
d) Chứng minh AE // FC.