Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
Từ đây ta có đpcm
Dấu "=" \(\Leftrightarrow a=b=c\)
c) \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b\)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left[\left(b-a\right)-\left(c-a\right)\right]+ca\left(c-a\right)\)
\(=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(ab-bc\right)-\left(c-a\right)\left(bc-ca\right)\)
\(=b\left(a-b\right)\left(a-c\right)-c\left(c-a\right)\left(b-a\right)\)
\(=b\left(a-b\right)\left(a-c\right)-c\left(a-c\right)\left(a-b\right)\)
\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)
đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)
\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)
TH1: \(x-1=0\Leftrightarrow x=1\)
TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0mà:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Rightarrow a=b=c\)