K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2020

Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?

1 tháng 6 2020

ê

1 tháng 6 2020

bởi vì abc là  một số thập phân 

9 tháng 2 2020

Bài này tao kiên trì trong nháp lắm rồi, nhưng trên này tao không kiên trì nữa đâu :))

Tóm lại bài này của mày quy đồng cả hai vế lên Kết hợp với điều giả sử \(a\ge b\ge c\)

Nên có đpcm.

9 tháng 2 2020

Nguyễn Văn Đạt không cần giả sử nha

19 tháng 8 2018

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1

26 tháng 3 2016

Chịu bài này rồi!

26 tháng 3 2016

mk mới hk lp 6 , bài này bó tay ko giải đc

19 tháng 7 2016

a) Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự : \(b^2+1=\left(b+a\right)\left(b+c\right)\) ; \(c^2+1=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

Vậy \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

b) Ta có ; \(a^2+2bc-1=a^2+2bc-\left(ab+bc+ac\right)=a^2-ab+bc-ac=a\left(a-b\right)-c\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\)

Tương tự : \(b^2+2ac-1=\left(a-b\right)\left(c-b\right)\) ; \(c^2+2ab-1=\left(a-c\right)\left(b-c\right)\)

Suy ra \(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)=\left(a-b\right)^2.\left(c-a\right)^2.\left[-\left(b-c\right)^2\right]\)

Vậy : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)}=-1\)