Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left(x-3-5+2x\right)\left(x-3+5-2x\right)=0\\ \Rightarrow\left(3x-8\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{8}{3}\end{matrix}\right.\\ b,=\left(x+y\right)^2-\left(x-2y\right)^2\\ =\left(x+y-x+2y\right)\left(x+y+x-2y\right)=3y\left(2x-y\right)\\ c,=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\\ d,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
a) 3x(x + 1) - 5y(x + 1)
= (x + 1)(3x - 5y)
b) 3x(x - 6) - 2(x - 6)
= (x - 6)(3x - 2)
c) 4y(x - 1) - (1 - x)
= 4y(x - 1) + (x - 1)
= (x - 1)(4y + 1)
d) (x - 3)³ + 3 - x
= (x - 3)³ - (x - 3)
= (x - 3)[(x - 3)² - 1]
= (x - 3)(x - 3 - 1)(x - 3 + 1)
= (x - 3)(x - 4)(x - 2)
e) 7x(x - y) - (y - x)
= 7x(x - y) + (x - y)
= (x - y)(7x + 1)
h) 3x³(2y - 3z) - 15x(2y - 3z)²
= (2y - 3z)[3x³ - 15x(2y - 3x)]
= 3x(2y - 3x)[x² - 5(2y - 3x)]
= 3x(2y - 3x)(x² - 10y + 3x)
= 3x(2y - 3x)(x² + 3x - 10y)
k) 3x(x + 2) + 5(-x - 2)
= 3x(x + 2) - 5(x + 2)
= (x + 2)(3x - 5)
l) 18x²(3 + x) + 3(x + 3)
= (x + 3)(18x² + 3)
= 3(x + 3)(6x² + 1)
m) 7x(x - y) - (y - x)
= 7x(x - y) + (x - y)
= (x - y)(7x + 1)
n) 10x(x - y) - 8y(y - x)
= 10x(x - y) + 8y(x - y)
= (x - y)(10x + 8y)
= 2(x - y)(5x + 4y)
\(a,=x\left(4x^2-1\right)=x\left(2x-1\right)\left(2x+1\right)\\ b,=2\left(3x-2\right)-x\left(3x-2\right)=\left(2-x\right)\left(3x-2\right)\\ c,=x\left(y-1\right)-\left(y-1\right)=\left(x-1\right)\left(y-1\right)\\ d,=\left(y+2\right)^2-4x^2=\left(y+2-2x\right)\left(y+2+2x\right)\\ e,=x^2-x-2x+2=\left(x-1\right)\left(x-2\right)\)
a) \(4x^3-x^2=x^2\left(4x-1\right)\)
b) \(6x-4+x\left(2-3x\right)=2\left(3x-2\right)-x\left(3x-2\right)=\left(2-x\right)\left(3x-2\right)\)
c) \(xy+1-x-y=\left(xy-x\right)-\left(y-1\right)=x\left(y-1\right)-\left(y-1\right)=\left(x-1\right)\left(y-1\right)\)
d) \(y^2-4x^2+4y+4=\left(y^2+4y+4\right)-4x^2=\left(y+2\right)^2-\left(2x\right)^2=\left(y-2x+2\right)\left(y+2x+2\right)\)
e) \(x^2-3x+2=\left(x^2-x\right)-\left(2x-2\right)=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
\(a,=5\left(x-2y\right)\\ b,=3xy\left(x-2y\right)\\ c,=\left(x-y\right)\left(x+3\right)\\ d,=\left(x-1\right)\left(2x-4x^2\right)=2x\left(1-2x\right)\left(x-1\right)\\ e,=\left(x-2y\right)^2\\ f,=\left(3x-4y\right)\left(3x+4y\right)\\ g,=\left(x-3\right)\left(x^2+3x+9\right)\)
a. 5x - 10y
= 5(x - 2y)
b. 3x2y - 6xy2
= 3xy(x - 2y)
c. x(x - y) - 3(y - x)
= x(x - y) + 3(x - y)
= (x + 3)(x - y)
d. 2x(x - 1) + 4x2(1 - x)
= 2x(x - 1) - 4x2(x - 1)
= (2x - 4x2)(x - 1)
= 2x(1 - 2x)(x - 1)
e. x2 - 4xy + 4y2
= (x - 2y)2
f. 9x2 - 16y2
= (3x - 4y)(3x + 4y)
g. x3 - 27
= (x - 3)(x2 + 3x + 9)
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
a. \(\left(x^2+2x\right)^2+9x^2+18x+20=x^4+4x^3+13x^2+18x+20\)
\(=x^4+2x^3+2x^3+5x^2+4x^2+4x^2+8x+10x+20\)
\(=x^2\left(x^2+2x+5\right)+2x\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
Lưu ý: có thể dùng phương pháp đồng nhất hệ số dưới dạng \(\left(x^2+ax+5\right)\left(x^2+bx+4\right)\) khi thực xong bước 1
b. \(x^3+2x-3=x^3+x^2-x^2+3x-x-3=x\left(x^2+x+3\right)-\left(x^2+x+3\right)=\left(x-1\right)\left(x^2+x+3\right)\)
c. \(x^2-4xy+4y^2-2x+4y-35=\left(x-2y\right)^2-2\left(x-2y\right)+1-36=\left(x-2y-1\right)^2-6^2\)
\(=\left(x-2y-1-6\right)\left(x-2y-1+6\right)=\left(x-2y-7\right)\left(x-2y+5\right)\)
a: \(\left(x-3\right)^2-\left(2x-5\right)^2\)
\(=\left(x-3-2x+5\right)\left(x-3+2x-5\right)\)
\(=\left(2-x\right)\left(3x-8\right)\)
b: \(\left(x+y\right)^2-x^2+4xy-4y^2\)
\(=\left(x+y\right)^2-\left(x-2y\right)^2\)
\(=\left(x+y+x-2y\right)\left(x+y-x+2y\right)\)
\(=3y\left(2x-y\right)\)