K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta cần tính cạnh BC và hai góc \(\widehat B,\widehat C.\)

Áp dụng định lí cosin, ta có:

\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {14^2} + {23^2} - 2.14.23.\cos {125^o}\\ \Rightarrow BC \approx 33\end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{33}}{{\sin {{125}^o}}} = \frac{{23}}{{\sin B}} = \frac{{14}}{{\sin C}}\\ \Rightarrow \sin B = \frac{{23.\sin {{125}^o}}}{{33}} \approx 0,57\\ \Rightarrow \widehat B \approx {35^o} \Rightarrow \widehat C \approx {20^o}\end{array}\)

b) Ta cần tính góc A và hai cạnh AB, AC.

Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {64^o} - {38^o} = {78^o}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{22}}{{\sin {{78}^o}}} = \frac{{AC}}{{\sin {{64}^o}}} = \frac{{AB}}{{\sin {{38}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}AC = \sin {64^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 20,22\\AB = \sin {38^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 13,85\end{array} \right.\end{array}\)

c) Ta cần tính góc A và hai cạnh AB, BC.

Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {120^o} - {28^o} = {32^o}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{BC}}{{\sin {{32}^o}}} = \frac{{22}}{{\sin {{120}^o}}} = \frac{{AB}}{{\sin {{28}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}BC = \sin {32^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 13,5\\AB = \sin {28^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 12\end{array} \right.\end{array}\)

d) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)

Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}};\cos B = \frac{{B{C^2} + A{B^2} - A{C^2}}}{{2.BC.BA}}\\ \Rightarrow \cos A = \frac{{{{32}^2} + {{23}^2} - {{44}^2}}}{{2.32.23}} = \frac{{ - 383}}{{1472}};\cos B = \frac{{{{44}^2} + {{23}^2} - {{32}^2}}}{{2.44.23}} = \frac{{131}}{{184}}\\ \Rightarrow \widehat A \approx {105^o},\widehat B = {44^o}36'\\ \Rightarrow \widehat C = {30^o}24'\end{array}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta cần tính góc \(\widehat A\) và hai cạnh \(b,c.\)

Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {44^o}30' - {64^o} = {71^o}30'.\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{17,4}}{{\sin {{71}^o}30'}} = \frac{b}{{\sin {{44}^o}30'}} = \frac{c}{{\sin {{64}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}b = \sin {44^o}30'.\frac{{17,4}}{{\sin {{71}^o}30'}} \approx 12,86\\c = \sin {64^o}.\frac{{17,4}}{{\sin {{71}^o}30'}} \approx 16,5\end{array} \right.\end{array}\)

b) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)

Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \cos A = \frac{{{6^2} + {8^2} - {{10}^2}}}{{2.6.8}} = 0;\cos B = \frac{{{{10}^2} + {8^2} - {6^2}}}{{2.10.8}} = \frac{4}{5}\\ \Rightarrow \widehat A = {90^o},\widehat B = {36^o}52'11,63''\\ \Rightarrow \widehat C = {53^o}7'48,37''\end{array}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Ta có: \(\widehat A = {180^o} - (\widehat B + \widehat C)\) \( \Rightarrow \widehat A = {180^o} - ({100^o} + {45^o}) = {35^o}\)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}}\)

\( \Rightarrow \left\{ \begin{array}{l}AC = \sin B.\frac{{AB}}{{\sin C}}\\BC = \sin A.\frac{{AB}}{{\sin C}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}AC = \sin {100^o}.\frac{{100}}{{\sin {{45}^o}}} \approx 139,3\\BC = \sin {35^o}.\frac{{100}}{{\sin {{45}^o}}} \approx 81,1\end{array} \right.\)

b)

Diện tích tam giác ABC là: \(S = \frac{1}{2}.BC.AC.\sin C = \frac{1}{2}.81,1.139,3.\sin {45^o} \approx 3994,2.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)

\( \Rightarrow \sin C = \sin A.\frac{{AB}}{{BC}} = \sin {120^o}.\frac{5}{7} = \frac{{5\sqrt 3 }}{{14}}\)

\( \Rightarrow \widehat C \approx 38,{2^o}\) hoặc \(\widehat C \approx 141,{8^o}\) (Loại)

Ta có: \(\widehat A = {120^o},\widehat C = 38,{2^o}\)\( \Rightarrow \widehat B = {180^o} - \left( {{{120}^o} + 38,{2^o}} \right) = 21,{8^o}\)

Áp dụng định lí cosin trong tam giác ABC ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {5^2} + {7^2} - 2.5.7.\cos 21,{8^o}\\ \Rightarrow A{C^2} \approx 9\\ \Rightarrow AC = 3\end{array}\)

Vậy độ dài cạnh AC là 3.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Theo định lí sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\quad (*)\)

+) Ta có: \(\hat A = {180^o} - \left( {\hat B + \;\hat C} \right) = {180^o} - \left( {{{60}^o} + {{45}^o}} \right) = {75^o}\)

\( \Rightarrow a = \frac{b}{{\sin B}}.\sin A = \frac{{10}}{{\sin {{60}^o}}}.\sin {75^o} \approx 11,154\)

+) \((*) \Rightarrow R = \frac{b}{{2\sin B}} = \frac{{10}}{{2\sin {{60}^o}}} = \frac{{10}}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{10\sqrt 3 }}{3}.\)

+) Diện tích tam giác ABC là: \(S = \frac{1}{2}ab.\sin {\mkern 1mu} \hat C\) \( \approx \frac{1}{2}.11,154.10.\sin {45^o}\)\( \approx 39,44\)

+) Lại có: \(R = \frac{c}{{2\sin C}}\)\( \Rightarrow c = 2.\frac{{10\sqrt 3 }}{3}.\sin {45^o} = \frac{{10\sqrt 6 }}{3} \approx 8,165\)

\( \Rightarrow p = \frac{{a + b + c}}{2} \approx \frac{{11,154 + 10 + 8,165}}{2} \approx 14,66\)

\( \Rightarrow r = \frac{S}{p} \approx \frac{{39,44}}{{14,66}} \approx 2,7\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Ta có: \(\widehat B = {75^o},\widehat C = {45^o}\)\( \Rightarrow \widehat A = {180^o} - \left( {{{75}^o} + {{45}^o}} \right) = {60^o}\)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)

\( \Rightarrow AB = \sin C.\frac{{BC}}{{\sin A}} = \sin {45^o}.\frac{{50}}{{\sin {{60}^o}}} \approx 40,8\)

Vậy độ dài cạnh AB là 40,8.

24 tháng 12 2018

AB.AC= |AB||AC|.cos(ab,ac)=-35/2

AB.BC=AB(BA+AC)=-49+ -35/2=-133/2

12 tháng 4 2017

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=75^o\)

* \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\Rightarrow AB=\dfrac{BCsinC}{sinA}=a\left(1+\sqrt{3}\right)\)

* \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BCsinB}{sinA}=a\left(\dfrac{-6+3\sqrt{2}}{2}\right)\)