Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E N F P D
Gọi AD là phân giác trong của \(\Delta\)ABC. Kéo dài DM cắt BE và CA lần lượt tại N và F, AN cắt BC tại P.
Dễ thấy \(\Delta\)ADB cân tại D có trung tuyến DM, suy ra DM là trung trực của AB
Do vậy ^DAN = ^DBN = 90o suy ra AP vuông góc AD hay AP là phân giác ngoài của \(\Delta\)ABC
Từ đó \(\left(BCPD\right)=-1\). Áp dụng phép chiếu xuyên tâm N: \(\left(BCPD\right)\rightarrow\left(ECFA\right)\)
Khi đó (ECFA) là hàng điều hòa. Mà ^AMF = 90o nên MA chính là phân giác của ^CME (đpcm).
Chỉ lm bài thoii, hình bn tự vẽ nha !!!
\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)
Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp
Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)
\(b.\) Tứ giác \(ADEH\) có:
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp
Từ đó \(\widehat{BAK}=\widehat{BDE}\)
Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )
Do đó \(\widehat{BJK}=\widehat{BDE}\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=75^o\)
* \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\Rightarrow AB=\dfrac{BCsinC}{sinA}=a\left(1+\sqrt{3}\right)\)
* \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BCsinB}{sinA}=a\left(\dfrac{-6+3\sqrt{2}}{2}\right)\)
Bài 1:
a) Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}=2:3:4\)
⇒\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí tổng ba góc trong một tam giác)
Ta có: \(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\) và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{2+3+4}=\frac{180^0}{9}=20^0\)
Do đó, ta được
\(\left\{{}\begin{matrix}\frac{\widehat{A}}{2}=20^0\\\frac{\widehat{B}}{3}=20^0\\\frac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=20^0\cdot2=40^0\\\widehat{B}=20^0\cdot3=60^0\\\widehat{C}=20^0\cdot4=80^0\end{matrix}\right.\)
Vậy: \(\widehat{A}=40^0\); \(\widehat{B}=60^0\); \(\widehat{C}=80^0\)
Bài 2:
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD là cạnh chung
\(\widehat{ABD}=\widehat{EBD}\)(do BD là tia phân giác của \(\widehat{EBA}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
⇒AB=EB(hai cạnh tương ứng)
Xét ΔAEB có AB=EB(cmt)
nên ΔAEB cân tại B(định nghĩa tam giác cân)
Xét ΔAEB cân tại B có \(\widehat{EBA}=60^0\)(gt)
nên ΔAEB đều(dấu hiệu nhận biết tam giác đều)
c) Ta có: ΔABC vuông tại A(gt)
mà \(\widehat{C}=30^0\)
nên \(AB=\frac{BC}{2}\)(trong một tam giác vuông, cạnh đối diện với góc 300 thì bằng nửa cạnh huyền)
hay BC=2AB=2*5=10cm
Vậy: BC=10cm
Bài 3:
Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
\(AM=\frac{BC}{2}\)(gt)
Do đó: ΔABC vuông tại A(định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=90^0-\widehat{C}=90^0-15^0=75^0\)
Vậy: \(\widehat{B}=75^0\)
a: Xét ΔBAI và ΔBDI có
BA=BD
\(\widehat{ABI}=\widehat{DBI}\)
BI chung
Do đó: ΔBAI=ΔBDI
Suy ra: \(\widehat{BAI}=\widehat{BDI}=90^0\)
hay ID\(\perp\)BC
b: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
=>BE=BC
c: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC
Xét ΔBEC có AD//EC
nên AD/EC=BA/BE=BD/BC
=>BA/BE=BD/BC=1/2
=>BD=1/2BC
mà BA=1/2BC
nên \(\widehat{ABC}=60^0\)