Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(0\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[4]{1-x}=a\\\sqrt[4]{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}0\le a;b\le1\\a+b=1\\a^4+b^4=1\end{matrix}\right.\)
Do \(0\le a;b\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a\\b^4\le b\end{matrix}\right.\) \(\Rightarrow a^4+b^4\le a+b=1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a+b=1\\a^4=a\\b^4=b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;0\right);\left(0;1\right)\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[4]{x}=1\\\sqrt[4]{x}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
b/ Đặt \(4x^2-4x+5=a>0\) ta được:
\(\sqrt{a}+\sqrt{3a+4}=6\)
\(\Leftrightarrow4a+4+2\sqrt{3a^2+4a}=36\)
\(\Leftrightarrow\sqrt{3a^2+4a}=16-2a\) (\(a\le8\))
\(\Leftrightarrow3a^2+4a=4a^2-64a+256\)
\(\Leftrightarrow a^2-68a+256=0\Rightarrow\left[{}\begin{matrix}a=4\\a=64\left(l\right)\end{matrix}\right.\)
\(\Rightarrow4x^2-4x+5=4\Leftrightarrow\left(2x-1\right)^2=0\)
b)Ta có:
\(\sqrt{4x^2-4x+5}+\sqrt{12x^2-12x+19}=6\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}=6\)
Vì \(\sqrt{\left(2x-1\right)^2+2^2}\ge2\) và \(\sqrt{3\left(2x-1\right)^2+4^2}\ge4\)
nên \(\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}\ge6\)
Vậy PT \(\left\{{}\begin{matrix}\sqrt{\left(2x-1\right)^2+2^2}=2\\\sqrt{3\left(2x-1\right)^2+4^2}=4\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{1}{2}\)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)
\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\) và \(VT\le7\)
\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)
b) điều kiện \(x>0\)
ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)
\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)
vậy \(x=1\)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
\(\Leftrightarrow\sqrt{3\left(2x+1\right)^2+4}+\sqrt{\left(2x+1\right)^2}+\left(2x+1\right)^2=2\)
Do \(\left\{{}\begin{matrix}\sqrt{3\left(2x+1\right)^2+4}\ge2\\\sqrt{\left(2x+1\right)^2}\ge0\\\left(2x+1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow VT\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Pt có nghiệm duy nhất \(x=-\frac{1}{2}\)
pt<=>\(\sqrt{\left(x+6\right)^3}+\sqrt{x+6}=\left(x^2+4x\right)^3+x^2+4x\)
đặt\(\sqrt{x+6}=a;x^2+4x=b\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+4}+\sqrt{3\left(2x-1\right)^2+16}=6\)
Do \(\left(2x-1\right)^2\ge0\Rightarrow VT\ge\sqrt{0+4}+\sqrt{3.0+16}=6\)
Dấu "=" xảy ra khi và chỉ khi \(\left(2x-1\right)^2=0\)
\(\Rightarrow x=\frac{1}{2}\)