Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+4}+\sqrt{3\left(2x-1\right)^2+16}=6\)
Do \(\left(2x-1\right)^2\ge0\Rightarrow VT\ge\sqrt{0+4}+\sqrt{3.0+16}=6\)
Dấu "=" xảy ra khi và chỉ khi \(\left(2x-1\right)^2=0\)
\(\Rightarrow x=\frac{1}{2}\)
a/ ĐKXĐ: \(0\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[4]{1-x}=a\\\sqrt[4]{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}0\le a;b\le1\\a+b=1\\a^4+b^4=1\end{matrix}\right.\)
Do \(0\le a;b\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a\\b^4\le b\end{matrix}\right.\) \(\Rightarrow a^4+b^4\le a+b=1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a+b=1\\a^4=a\\b^4=b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;0\right);\left(0;1\right)\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[4]{x}=1\\\sqrt[4]{x}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
b/ Đặt \(4x^2-4x+5=a>0\) ta được:
\(\sqrt{a}+\sqrt{3a+4}=6\)
\(\Leftrightarrow4a+4+2\sqrt{3a^2+4a}=36\)
\(\Leftrightarrow\sqrt{3a^2+4a}=16-2a\) (\(a\le8\))
\(\Leftrightarrow3a^2+4a=4a^2-64a+256\)
\(\Leftrightarrow a^2-68a+256=0\Rightarrow\left[{}\begin{matrix}a=4\\a=64\left(l\right)\end{matrix}\right.\)
\(\Rightarrow4x^2-4x+5=4\Leftrightarrow\left(2x-1\right)^2=0\)
b)Ta có:
\(\sqrt{4x^2-4x+5}+\sqrt{12x^2-12x+19}=6\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}=6\)
Vì \(\sqrt{\left(2x-1\right)^2+2^2}\ge2\) và \(\sqrt{3\left(2x-1\right)^2+4^2}\ge4\)
nên \(\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}\ge6\)
Vậy PT \(\left\{{}\begin{matrix}\sqrt{\left(2x-1\right)^2+2^2}=2\\\sqrt{3\left(2x-1\right)^2+4^2}=4\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{1}{2}\)
Bài 1: \(\sqrt{x^2+2x+5}=\sqrt{\left(x^2+2x+1\right)+4}\)
\(=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy...
Bài 2:
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|2x-1\right|+\left|2x-3\right|\)\(=\left|2x-1\right|+\left|3-2x\right|\)
\(\ge\left|2x-1+3-2x\right|=2\)
Dấu "=" xảy ra khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
Vạy....
\(\Leftrightarrow\sqrt{3\left(2x+1\right)^2+4}+\sqrt{\left(2x+1\right)^2}+\left(2x+1\right)^2=2\)
Do \(\left\{{}\begin{matrix}\sqrt{3\left(2x+1\right)^2+4}\ge2\\\sqrt{\left(2x+1\right)^2}\ge0\\\left(2x+1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow VT\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Pt có nghiệm duy nhất \(x=-\frac{1}{2}\)
Em thử nhá, ko chắc đâu
ĐK: \(x\ge\frac{3}{4}\)
PT \(\Leftrightarrow4x^2+12x-9-7x\sqrt{4x-3}=0\)
\(\Leftrightarrow4x^2-9x-9-7x\left(\sqrt{4x-3}-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(4x+3\right)-\frac{28x\left(x-3\right)}{\sqrt{4x-3}+3}=0\)
\(\Leftrightarrow\left(x-3\right)\left(4x+3-\frac{28x}{\sqrt{4x-3}+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\4x+3=\frac{28x}{\sqrt{4x-3}+3}\left(1\right)\end{matrix}\right.\)
Giải (1): \(\Leftrightarrow\left(4x+3\right)\sqrt{4x-3}-16x+9=0\)
\(\Leftrightarrow\left(4x+3\right)\left(\sqrt{4x-3}-1\right)-12\left(x-1\right)=0\)
\(\Leftrightarrow\frac{4\left(x-1\right)\left(4x+3\right)}{\sqrt{4x-3}+1}-12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{4\left(4x+3\right)}{\sqrt{4x-3}+1}-12\right]=0\)
Nhận xét rằng cái ngoặc to luôn > 0 với mọi \(x\ge\frac{3}{4}\). Suy ra x = 1
Vậy tập hợp nghiệm của pt: S = {1;3}
Cách 2:
ĐK: \(x\ge\frac{3}{4}\)
\(4x^2+12x-9-7x\sqrt{4x-3}=0\)
\(\Leftrightarrow4x^2-16x+12+7\left[\left(4x-3\right)-x\sqrt{4x-3}\right]=0\)
\(\Leftrightarrow4\left(x-1\right)\left(x-3\right)-7\sqrt{4x-3}\left(x-\sqrt{4x-3}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(4-\frac{7\sqrt{4x-3}}{x+\sqrt{4x-3}}\right)=0\)
Cái ngoặc to phía sau \(=\frac{4x-3\sqrt{4x-3}}{MS>0}=\frac{16x^2-36x+27}{\left(4x+3\sqrt{4x-3}\right).MS>0}>0\) cái ngoặc to vô nghiệm
Do đó x = 1 (Thỏa mãn) hoặc x = 3 (thỏa mãn)
Ngắn gọn hơn nhỉ:)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1