Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+\sqrt{4x^2-4x+1}=2\)
\(\Leftrightarrow x+\sqrt{\left(2x-1\right)^2}=2\)
\(\Leftrightarrow x+|2x-1|=2\)
\(TH1:x\ge0\)
\(\Leftrightarrow x+2x-1=2\)
\(\Leftrightarrow3x-1=2\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\left(TM\right)\)
\(TH2:x< 0\)
\(\Leftrightarrow x-2x-1=2\)
\(\Leftrightarrow-x-1=2\)
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\left(TM\right)\)
Vậy:...
b) \(3x-1-\sqrt{4x^2-12x+9}=0\)
\(\Leftrightarrow3x-1-\sqrt{\left(2x-3\right)^2}=0\)
\(\Leftrightarrow3x-1-|2x-3|=0\)
\(TH1:x\ge0\)
\(\Leftrightarrow3x-1-2x+3=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\left(KTM\right)\)
\(TH2:x< 0\)
\(\Leftrightarrow3x-1+2x-3=0\)
\(\Leftrightarrow5x-4=0\Leftrightarrow x=\frac{4}{5}\left(KTM\right)\)
Vậy: pt vô nghiệm
Học Tốt!!!
a)...ghi lại đề...
\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)
\(\Leftrightarrow\sqrt{x-2}^2=1^2\)
\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))
\(\Leftrightarrow x=3\)
\(\)
\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)
\(\Rightarrow x^2-3x+2=x-1\)
\(\Rightarrow x^2-4x+3=0\)
\(\Rightarrow x^2-x-3x+3=0\)
\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy..........
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+4}+\sqrt{3\left(2x-1\right)^2+16}=6\)
Do \(\left(2x-1\right)^2\ge0\Rightarrow VT\ge\sqrt{0+4}+\sqrt{3.0+16}=6\)
Dấu "=" xảy ra khi và chỉ khi \(\left(2x-1\right)^2=0\)
\(\Rightarrow x=\frac{1}{2}\)
a/ ĐKXĐ: \(0\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[4]{1-x}=a\\\sqrt[4]{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}0\le a;b\le1\\a+b=1\\a^4+b^4=1\end{matrix}\right.\)
Do \(0\le a;b\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a\\b^4\le b\end{matrix}\right.\) \(\Rightarrow a^4+b^4\le a+b=1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a+b=1\\a^4=a\\b^4=b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;0\right);\left(0;1\right)\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[4]{x}=1\\\sqrt[4]{x}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
b/ Đặt \(4x^2-4x+5=a>0\) ta được:
\(\sqrt{a}+\sqrt{3a+4}=6\)
\(\Leftrightarrow4a+4+2\sqrt{3a^2+4a}=36\)
\(\Leftrightarrow\sqrt{3a^2+4a}=16-2a\) (\(a\le8\))
\(\Leftrightarrow3a^2+4a=4a^2-64a+256\)
\(\Leftrightarrow a^2-68a+256=0\Rightarrow\left[{}\begin{matrix}a=4\\a=64\left(l\right)\end{matrix}\right.\)
\(\Rightarrow4x^2-4x+5=4\Leftrightarrow\left(2x-1\right)^2=0\)
b)Ta có:
\(\sqrt{4x^2-4x+5}+\sqrt{12x^2-12x+19}=6\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}=6\)
Vì \(\sqrt{\left(2x-1\right)^2+2^2}\ge2\) và \(\sqrt{3\left(2x-1\right)^2+4^2}\ge4\)
nên \(\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}\ge6\)
Vậy PT \(\left\{{}\begin{matrix}\sqrt{\left(2x-1\right)^2+2^2}=2\\\sqrt{3\left(2x-1\right)^2+4^2}=4\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(\Leftrightarrow\left|2x+1\right|=\left|x+6\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+6\\2x+1=-x-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{3}\end{matrix}\right.\)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)
\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\) và \(VT\le7\)
\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)
b) điều kiện \(x>0\)
ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)
\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)
vậy \(x=1\)
\(\Leftrightarrow\sqrt{3\left(2x+1\right)^2+4}+\sqrt{\left(2x+1\right)^2}+\left(2x+1\right)^2=2\)
Do \(\left\{{}\begin{matrix}\sqrt{3\left(2x+1\right)^2+4}\ge2\\\sqrt{\left(2x+1\right)^2}\ge0\\\left(2x+1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow VT\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Pt có nghiệm duy nhất \(x=-\frac{1}{2}\)