\(\sqrt[4]{1-x}+\sqrt[4]{x}=1\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 11 2019

a/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[4]{1-x}=a\\\sqrt[4]{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}0\le a;b\le1\\a+b=1\\a^4+b^4=1\end{matrix}\right.\)

Do \(0\le a;b\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a\\b^4\le b\end{matrix}\right.\) \(\Rightarrow a^4+b^4\le a+b=1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}a+b=1\\a^4=a\\b^4=b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;0\right);\left(0;1\right)\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[4]{x}=1\\\sqrt[4]{x}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

b/ Đặt \(4x^2-4x+5=a>0\) ta được:

\(\sqrt{a}+\sqrt{3a+4}=6\)

\(\Leftrightarrow4a+4+2\sqrt{3a^2+4a}=36\)

\(\Leftrightarrow\sqrt{3a^2+4a}=16-2a\) (\(a\le8\))

\(\Leftrightarrow3a^2+4a=4a^2-64a+256\)

\(\Leftrightarrow a^2-68a+256=0\Rightarrow\left[{}\begin{matrix}a=4\\a=64\left(l\right)\end{matrix}\right.\)

\(\Rightarrow4x^2-4x+5=4\Leftrightarrow\left(2x-1\right)^2=0\)

18 tháng 11 2019

b)Ta có:

\(\sqrt{4x^2-4x+5}+\sqrt{12x^2-12x+19}=6\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}=6\)

\(\sqrt{\left(2x-1\right)^2+2^2}\ge2\) \(\sqrt{3\left(2x-1\right)^2+4^2}\ge4\)

nên \(\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}\ge6\)

Vậy PT \(\left\{{}\begin{matrix}\sqrt{\left(2x-1\right)^2+2^2}=2\\\sqrt{3\left(2x-1\right)^2+4^2}=4\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{1}{2}\)

18 tháng 8 2019

a)...ghi lại đề...

\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-2}^2=1^2\)

\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))

\(\Leftrightarrow x=3\)

\(\)

18 tháng 8 2019

\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Rightarrow x^2-3x+2=x-1\)

\(\Rightarrow x^2-4x+3=0\)

\(\Rightarrow x^2-x-3x+3=0\)

\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy..........

28 tháng 10 2022

b:

ĐKXĐ: x>0

 \(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)

\(\Leftrightarrow x+1-2\sqrt{x}=0\)

=>x=1

24 tháng 10 2018

a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)

\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)

ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\)\(VT\le7\)

\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)

b) điều kiện \(x>0\)

ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)

\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)

\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)

vậy \(x=1\)

23 tháng 10 2018

Mysterious Person giup mk nha

28 tháng 10 2022

b:

ĐKXĐ: x>0

 \(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)

\(\Leftrightarrow x+1-2\sqrt{x}=0\)

=>x=1

16 tháng 7 2019

\(a,\sqrt{4x^2-20x+25}+2x=5\)

    \(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

  \(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)

\(b,\sqrt{1-12x+36x^2}=5\)

  \(\Rightarrow6x-1=5\)

 \(\Rightarrow6x=6\Rightarrow x=1\) 

\(c,\sqrt{x^2+x}=x\)

  \(\Rightarrow x^2+x=x^2\)

\(\Rightarrow x=0\)   

16 tháng 7 2019

\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)

\(\Rightarrow-1=0\) (vô lý)

=> PT vô nghiệm 

AH
Akai Haruma
Giáo viên
19 tháng 8 2019

a)

ĐK: $x\geq 2$

PT \(\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}\)

\(\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1(\text{loại vì x}\geq 2)\\ \sqrt{x-2}=1\end{matrix}\right.\)

\(\Rightarrow x=1^2+2=3\) là nghiệm duy nhất thỏa mãn

b)

ĐK: $x\in\mathbb{R}$

Bình phương 2 vế:

\(\Rightarrow x^2-4x+4=4x^2-12x+9\)

\(\Leftrightarrow (x-2)^2=(2x-3)^2\)

\(\Leftrightarrow (x-2)^2-(2x-3)^2=0\Leftrightarrow (x-2-2x+3)(x-2+2x-3)=0\)

\(\Leftrightarrow (-x+1)(3x-5)=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\) (đều thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
19 tháng 8 2019

c)

ĐKXĐ: $x\geq 3$

PT \(\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}\)

\(\Leftrightarrow (x-2)(x-3)=x-2\) (bình phương 2 vế không âm)

\(\Leftrightarrow (x-2)(x-3-1)=0\)

\(\Rightarrow \left[\begin{matrix} x-2=0\\ x-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2(\text{loại vì x}\geq 3)\\ x=4\end{matrix}\right.\)

Vậy $x=4$

d)

ĐK: $x\in\mathbb{R}$

PT \(\Leftrightarrow 4x^2-4x+1=x^2-6x+9\) (bình phương 2 vế không âm)

\(\Leftrightarrow (2x-1)^2=(x-3)^2\Leftrightarrow (2x-1)^2-(x-3)^2=0\)

\(\Leftrightarrow (2x-1-x+3)(2x-1+x-3)=0\)

\(\Leftrightarrow (x+2)(3x-4)=0\Rightarrow \left[\begin{matrix} x+2=0\\ 3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\) (đều thỏa mãn)

Vậy.........

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)