K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

1+1+...+1x0 

= 1 +1 +...+0

= 1+1+...

k mk nhé

30 tháng 1 2017

đến già cũng không hết đâu bạn ạ

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
a. Tại $x_0=\sqrt{5}$ thì:

$y=f(x_0)=\frac{x_0}{2}-\sqrt{x_0^2-1}+2$

$=\frac{\sqrt{5}}{2}-\sqrt{5-1}+2=\frac{\sqrt{5}}{2}$

b. Tại $x=\frac{1}{4}$ thì $x^2-1=\frac{-15}{16}< 0$ nên căn thức $\sqrt{x^2-1}$ không xác định. Do đó không tính được.

ĐKXĐ: \(m\ne-\dfrac{1}{3}\)

a) Để (P) đi qua điểm \(E\left(\dfrac{1}{2};\dfrac{1}{4}\right)\) thì

Thay \(x=\dfrac{1}{2}\)và \(y=\dfrac{1}{4}\) vào hàm số \(y=\left(3m+1\right)x^2\), ta được:

\(\left(3m+1\right)\cdot\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow3m+1=1\)

\(\Leftrightarrow3m=0\)

hay m=0(thỏa ĐK)

b) Ta có: \(\left\{{}\begin{matrix}3x-4y=2\\-4x+3y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x-16y=8\\-12x+9y=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=-7\\3x-4y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\3x=2+4y=2+4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy: F(2;1)

Để (P) đi qua điểm F(2;1) thì 

Thay x=2 và y=1 vào hàm số \(y=\left(3m+1\right)x^2\), ta được:

\(\left(3m+1\right)\cdot4=1\)

\(\Leftrightarrow3m+1=\dfrac{1}{4}\)

\(\Leftrightarrow3m=-\dfrac{3}{4}\)

\(\Leftrightarrow m=\dfrac{-3}{4}:3=\dfrac{-3}{4}\cdot\dfrac{1}{3}=\dfrac{-1}{4}\)(thỏa ĐK)

21 tháng 10 2023

a: \(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2=\dfrac{1}{4}+\dfrac{1}{2}-2=\dfrac{3}{8}-2=\dfrac{3-16}{8}=-\dfrac{13}{8}\)

b: \(f\left(\sqrt{3}\right)=\dfrac{2\sqrt{3}}{\left(\sqrt{3}\right)^2+1}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)

30 tháng 11 2024

Phương trình hoành độ giao điểm: 
\(mx_0+m=\dfrac{-1}{m}x_0+\dfrac{1}{m}\) (ĐK: \(m\ne0\))

\(m^2x_0+m^2=-x_0+1\)

\(x_0\left(m^2+1\right)=1-m^2\)

\(x_0=\dfrac{1-m^2}{m^2+1}\) (1)

Mà theo (d1): \(y_0=mx_0+m\) 

Suy ra: \(y_0=m.\dfrac{1-m^2}{m^2+1}+m\)
\(y_0=\dfrac{m-m^3+m^3+m}{m^2+1}\)

\(y_0=\dfrac{2m}{m^2+1}\) (2)

Thế (1) và (2) vào T ta được: 
\(T=\left(\dfrac{1-m^2}{m^2+1}\right)^2+\left(\dfrac{2m}{m^2+1}\right)^2\)

\(T=\dfrac{m^4-2m^2+1+4m^2}{m^4+2m^2+1}\)
\(T=1\)

 

15 tháng 11 2017

Ta có d: 4x + 2y = −5 ⇔ y = − 4 x − 5 2 và d’: 2x – y = −1 ⇔ y = 2x + 1

Xét phương trình hoành độ giao điểm của d và d’:

− 4 x − 5 2 = 2 x + 1 ⇔ −4x – 5 = 4x + 2 ⇔ 8x = −7 ⇔ x = − 7 8

⇒ y = 2 x + 1 = 2. − 7 8 + 1 = − 3 4

Vậy tọa độ giao điểm của d và d’ là − 7 8 ; − 3 4

Suy ra nghiệm của hệ phương trình 4 x + 2 y = − 5 2 x − y = − 1 là x 0 ;   y 0 = − 7 8 ; − 3 4

Từ đó x 0. y 0 = − 7 8 . − 3 4 = 21 32

Đáp án: A

Câu a :))

Hàm số đã cho đồng biến .

giải thích :

Do \(m^2\ge0\forall m\)

\(\Rightarrow m^2+1>0\)

Vậy hàm số trên đồng biến.

16 tháng 1 2019

Giả sử đths đi qua điểm cố định ( x0;y0 )

Ta có y0 = ( m2 +1 )x0 - 1

  <=> y0 = m2 x0 +x0 -1

<=> y0 -x0 +1 -m2x0 = 0

Để pt nghiệm đúng với mọi m \(\Leftrightarrow\hept{\begin{cases}y_0-x_0+1=0\\x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}y_0=-1\\x_0=0\end{cases}}}\)

Vậy đths luôn đi qua điểm cố định ( 0 ; -1 )

28 tháng 2 2020

HPT : \(\hept{\begin{cases}2x+y=2\\x+2y=4m+5\end{cases}}\)

a) Ta có : x + 2y = 4m + 5

Thay m = -1, ta được:

         x + 2y = 4.(-1) + 5

\(\Leftrightarrow\)x + 2y = 1   (1)

Lại có : 2x + y = 2  (2)

Cộng (1) với (2), ta được :

        3x + 3y = 1 + 2

\(\Leftrightarrow\)3(x + y) = 3

\(\Leftrightarrow\)x + y = 1   (3)

Lấy (2) trừ (3), ta được :

2x + y - x - y = 2 - 1

\(\Leftrightarrow\)x = 1

\(\Leftrightarrow\)y = 0

Vậy với \(m=-1\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

b) Thay xo = yo - 2 vào HPT, ta được :

\(\Leftrightarrow\hept{\begin{cases}2\left(y_o-2\right)+y_o=2\\y_o-2+2y_o=4m+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y_o-6=0\\3y_o-6=4m+1\end{cases}}\)

\(\Leftrightarrow4m+1=0\)

\(\Leftrightarrow m=-\frac{1}{4}\)

Vậy để \(x_o=y_o-2\Leftrightarrow m=-\frac{1}{4}\)