Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có d: −2x + y = 3 ⇔ y = 2x + 3 và d’: x + y = 5 ⇔ y = 5 – x
Xét phương trình hoành độ giao điểm của d và d’: 2x + 3 = 5 – x ⇔ x = 2 3
⇒ y = 5 – x = 5 − 2 3 = 13 3
Vậy tọa độ giao điểm của d và d’ là 2 3 ; 13 3
Suy ra nghiệm của hệ phương trình − 2 x + y = 3 x + y = 5 là 2 3 ; 13 3
Từ đó y 0 – x 0 = 13 3 − 2 3 = 11 3
Đáp án: A
Bài 2:
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=-x+3\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2-2x+3x-3=0\)
\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x=1 vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot1^2=2\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)
Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)
Câu 6 :
Ta có hệ phương trình : \(\left\{{}\begin{matrix}x+2y=n\left(I\right)\\2x-3y=5\left(II\right)\end{matrix}\right.\)
- Từ ( I ) ta có phương trình :\(x+2y=n\)
=> \(x=n-2y\left(III\right)\)
- Thay x = n - 2y vào phương trình (II ) ta được : \(2\left(n-2y\right)-3y=5\)
=> \(2n-4y-3y=5\)
=> \(-7y=5-2n\)
=> \(y=\frac{5-2n}{-7}=\frac{2n-5}{7}\)
- Thay \(y=\frac{2n-5}{7}\) vào phương trình ( III ) ta được : \(x=n-\frac{2\left(2n-5\right)}{7}\)
=> \(x=\frac{7n}{7}-\frac{4n-10}{7}\)
=> \(x=\frac{3n-10}{7}\)
Ta có : \(\left\{{}\begin{matrix}x< 0\\y>0\end{matrix}\right.\) ( IV )
- Thay \(x=\frac{3n-10}{7}\), \(y=\frac{2n-5}{7}\) vào hệ bất phương trình ( IV ) ta được : \(\left\{{}\begin{matrix}\frac{3n-10}{7}< 0\\\frac{2n-5}{7}>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3n-10< 0\\2n-5>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3n< 10\\2n>5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}n< \frac{10}{3}\\n>\frac{5}{2}\end{matrix}\right.\)
=> \(\frac{5}{2}< n< \frac{10}{3}\)
Vậy để phương trình trên có nghiệm (x, y ) thỏa mãn x <0, y > 0 thì \(\frac{5}{2}< n< \frac{10}{3}\)
a) \(\sqrt{4x^2-4x+9}=3\)
Vì \(4x^2-4x+9=\left(2x-1\right)^2+8>0\)( Với mọi x )
Nên \(\sqrt{4x^2-4x+9}=3\)
⇔\(4x^2-4x+9=9\)
⇔\(4x^2-4x=0\)
⇔\(4x\left(x-1\right)=0\)
⇔\(\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)là nghiệm
Ta có d: 4x + 2y = −5 ⇔ y = − 4 x − 5 2 và d’: 2x – y = −1 ⇔ y = 2x + 1
Xét phương trình hoành độ giao điểm của d và d’:
− 4 x − 5 2 = 2 x + 1 ⇔ −4x – 5 = 4x + 2 ⇔ 8x = −7 ⇔ x = − 7 8
⇒ y = 2 x + 1 = 2. − 7 8 + 1 = − 3 4
Vậy tọa độ giao điểm của d và d’ là − 7 8 ; − 3 4
Suy ra nghiệm của hệ phương trình 4 x + 2 y = − 5 2 x − y = − 1 là x 0 ; y 0 = − 7 8 ; − 3 4
Từ đó x 0. y 0 = − 7 8 . − 3 4 = 21 32
Đáp án: A