K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2024

Phương trình hoành độ giao điểm: 
\(mx_0+m=\dfrac{-1}{m}x_0+\dfrac{1}{m}\) (ĐK: \(m\ne0\))

\(m^2x_0+m^2=-x_0+1\)

\(x_0\left(m^2+1\right)=1-m^2\)

\(x_0=\dfrac{1-m^2}{m^2+1}\) (1)

Mà theo (d1): \(y_0=mx_0+m\) 

Suy ra: \(y_0=m.\dfrac{1-m^2}{m^2+1}+m\)
\(y_0=\dfrac{m-m^3+m^3+m}{m^2+1}\)

\(y_0=\dfrac{2m}{m^2+1}\) (2)

Thế (1) và (2) vào T ta được: 
\(T=\left(\dfrac{1-m^2}{m^2+1}\right)^2+\left(\dfrac{2m}{m^2+1}\right)^2\)

\(T=\dfrac{m^4-2m^2+1+4m^2}{m^4+2m^2+1}\)
\(T=1\)

 

=>2x+6y=2m+2 và 2x-y=7

=>7y=2m-5 và 2x-y=7

=>y=2/7m-5/7 và 2x=y+7

=>y=2/7m-5/7 và 2x=2/7m+30/7

=>x=1/7m+15/7 và y=2/7m-5/7

x0+2y0 bằng gì bạn ơi?

5 tháng 4 2019

a)

\(\Delta'=\left(-2\right)^2-\left(4m-m^2\right)=4-4m+m^2=\left(m-2\right)^2\ge0\)

\(\Delta'\ge0\) nên phương trình có nghiệm với mọi m

b) Theo Vi-ét có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=4m-m^2\end{matrix}\right.\)

Lấy phương trình đầu của hệ, kết hợp với đề bài, có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_1^2-5x_1=4-x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x^2-4x_1+4=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left(x_1-2\right)^2=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left[{}\begin{matrix}x_1=2+2\sqrt{2}\\x_1=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=2+2\sqrt{2}\\x_2=2+2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_1=2-2\sqrt{2}\\x_2=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

Ta có

\(x_1x_2=4m-m^2\)

Đã tìm được \(x_1\)\(x_2\) , thay vào để tìm m

28 tháng 2 2020

HPT : \(\hept{\begin{cases}2x+y=2\\x+2y=4m+5\end{cases}}\)

a) Ta có : x + 2y = 4m + 5

Thay m = -1, ta được:

         x + 2y = 4.(-1) + 5

\(\Leftrightarrow\)x + 2y = 1   (1)

Lại có : 2x + y = 2  (2)

Cộng (1) với (2), ta được :

        3x + 3y = 1 + 2

\(\Leftrightarrow\)3(x + y) = 3

\(\Leftrightarrow\)x + y = 1   (3)

Lấy (2) trừ (3), ta được :

2x + y - x - y = 2 - 1

\(\Leftrightarrow\)x = 1

\(\Leftrightarrow\)y = 0

Vậy với \(m=-1\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

b) Thay xo = yo - 2 vào HPT, ta được :

\(\Leftrightarrow\hept{\begin{cases}2\left(y_o-2\right)+y_o=2\\y_o-2+2y_o=4m+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y_o-6=0\\3y_o-6=4m+1\end{cases}}\)

\(\Leftrightarrow4m+1=0\)

\(\Leftrightarrow m=-\frac{1}{4}\)

Vậy để \(x_o=y_o-2\Leftrightarrow m=-\frac{1}{4}\)