K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

a: \(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2=\dfrac{1}{4}+\dfrac{1}{2}-2=\dfrac{3}{8}-2=\dfrac{3-16}{8}=-\dfrac{13}{8}\)

b: \(f\left(\sqrt{3}\right)=\dfrac{2\sqrt{3}}{\left(\sqrt{3}\right)^2+1}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

19 tháng 10 2019

 hờ hờ, tên tài khoản dài vậy bạn. hihihi. 

19 tháng 10 2019

Không biết đừng hỏi tao 

9 tháng 12 2017

a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với \(x>0;x\ne1\)

\(\Rightarrow A=\dfrac{x}{\sqrt{x-1}}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

= \(\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

= \(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

= \(\sqrt{x}-1\)

b) Với \(x>0;x\ne1\)

A=\(\sqrt{x}-1\)

Ta có : \(x=3+2\sqrt{2}\) ( Thỏa mãn ĐKXĐ )

Thay \(x=3+2\sqrt{2}\) vào biểu thức A ta có :

A=\(\sqrt{3+2\sqrt{2}}-1\)= \(\sqrt{2}+1-1\)=\(\sqrt{2}\)

9 tháng 12 2017

\(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

a ) Rút gọn :

\(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

\(\Rightarrow A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

\(\Rightarrow A=\sqrt{x}-1\)

b ) \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

Thay x vào A, ta có :

\(\sqrt{\left(\sqrt{2}+1\right)^2}-1=\sqrt{2}+1-1=\sqrt{2}\)

Vậy ...............

11 tháng 5 2017

1/ ĐKXĐ: \(x\ge0,x\ne1\)

\(E=\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\dfrac{1}{\sqrt{x}-1}\right)-\left(1-\dfrac{\sqrt{x}}{x+1}\right)\)

= \(\left[\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}-1}\right]-\left(1+\dfrac{\sqrt{x}}{x+1}\right)\)

= \(\dfrac{2\sqrt{x}-x-1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\dfrac{x+1+\sqrt{x}}{x+1}\)

= \(\dfrac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\dfrac{x+1+\sqrt{x}}{x+1}\)

= \(\dfrac{1-\sqrt{x}}{x+1}-\dfrac{x+1+\sqrt{x}}{x+1}\)

= \(\dfrac{1-\sqrt{x}-x-1-\sqrt{x}}{x+1}=\dfrac{-x-2\sqrt{x}}{x+1}\)

b/ Với \(x\ge0,x\ne1\)

Để \(E=-\dfrac{1}{7}\Leftrightarrow\dfrac{-x-2\sqrt{x}}{x+1}=-\dfrac{1}{7}\)

\(\Leftrightarrow-7x-14\sqrt{x}+x+1=0\)

\(\Leftrightarrow-6x-14\sqrt{x}+1=0\)

\(\Leftrightarrow\left(6\sqrt{x}+7-\sqrt{55}\right)\left(6\sqrt{x}+7+\sqrt{55}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6\sqrt{x}+7-\sqrt{55}=0\\6\sqrt{x}+7+\sqrt{55}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{-7+\sqrt{55}}{6}\\\sqrt{x}=\dfrac{-7-\sqrt{55}}{6}\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{52-7\sqrt{55}}{18}\)

Vậy để \(E=-\dfrac{1}{7}\) thì \(x=\dfrac{52-7\sqrt{55}}{18}\)

7 tháng 8 2017

Toán lớp mấy

7 tháng 8 2017

toán tuổi thơ chắc chỉ cần đáp số thôi nhỉ

1. S={7;-5}

2. HPT có 2 nghiệm (x;y) là (2;-3) và (3/2;-7/2)

3. a=b=0

4. Dễ rồi

10 tháng 7 2018

\(a.\sqrt{2a}.\sqrt{18a}=\sqrt{2a}.3\sqrt{2a}=3.2a=6a\)

\(b.\sqrt{3a.27ab^2}=\sqrt{9a^2b^2.9}=9\text{ |}ab\text{ |}\)

\(c.2y^2.\sqrt{\dfrac{x^4}{4y^2}}=2y^2.\dfrac{x^2}{-2y}=-x^2y\)

\(d.\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}=\dfrac{y}{x}.\dfrac{x}{y^2}=\dfrac{1}{y}\)

\(e.\sqrt{\dfrac{9a^2}{16}}=\dfrac{3\text{ |}a\text{ |}}{4}\)

\(f.\sqrt{10.16a^2}=-4a\sqrt{10}\)

\(g.\sqrt{a^4\left(3-a\right)^2}=a^2\left(a-3\right)\)

\(h.\sqrt{\dfrac{2a^2b^4}{98}}\sqrt{\dfrac{a^2b^4}{49}}=\dfrac{b^2\text{ |}a\text{ |}}{7}\)

4 tháng 8 2017

b) \(B=\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-\dfrac{x\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x-\sqrt{x}\right)-x\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\) = \(\dfrac{x\sqrt{x}-x-x\sqrt{x}+x^2}{\sqrt{x}-x}=\dfrac{x^2-x}{\sqrt{x}-x}\)

c) \(C=\dfrac{x+2\sqrt{x}}{\sqrt{x}-x}-\dfrac{x\sqrt{x}}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)-x\sqrt{x}\left(\sqrt{x}-x\right)}{\left(\sqrt{x}-x\right)\left(\sqrt{x}+1\right)}=x+2\sqrt{x}-x\sqrt{x}\)

\(d,D=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\) \(\dfrac{\left(x+2\sqrt{x}\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+7\sqrt{x}-2}{\sqrt{x}+2}\)

e) \(E=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2\sqrt{x}-24}{\sqrt{x}+3}\)

F) F = \(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{23-2\sqrt{x}}{\sqrt{x}+5}\)

4 tháng 8 2017

thanks p.... sorry mk chép nhầm đề câu e.

E= \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)+ \(\dfrac{2\sqrt{x}-24}{x-9}\)( x>0; x#9)