Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Để hpt có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{3}{-2}\Leftrightarrow\)\(m\ne\dfrac{-3}{2}\)
Bài 1: \(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)
Lấy (1) cộng (2), ta được: \(\left(m+2\right)x=3\Rightarrow x=\dfrac{3}{m+2}\)
Thay vào (2): \(\dfrac{6}{m+2}-y=-2\)\(\Rightarrow y=\dfrac{6+2m+4}{m+2}=\dfrac{2m+10}{m+2}\)
x0+y0=1\(\Rightarrow\dfrac{3}{m+2}+\dfrac{2m+10}{m+2}=\dfrac{2m+13}{m+2}=1\)(ĐK: \(m\ne-2\))
\(\Rightarrow2m+13=m+2\Leftrightarrow m=-11\left(TM\right)\)
Bài 3: Thay \(x=\sqrt{2};y=4-\sqrt{2}\) vào đths y=ax+b:
\(\sqrt{2}a+b=4-\sqrt{2}\left(1\right)\)
Thay x=2; \(y=\sqrt{2}\) vào đths y=ax+b:
\(2a+b=\sqrt{2}\left(2\right)\)
Từ (1) và (2), ta có hpt: \(\left\{{}\begin{matrix}\sqrt{2}a+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=\sqrt{2}+4\end{matrix}\right.\)
Vậy đths \(y=-2x+4+\sqrt{2}\) đi qua điểm \(\left(\sqrt{2};4-\sqrt{2}\right)\) và \(\left(2;\sqrt{2}\right).\)
1) phương trình có 2 nghiệm phân biệt <=> \(\Delta=9-4m>0\Leftrightarrow m< \dfrac{9}{4}\) .
ta có: x13x2+x1x23=x1.x2(x12+x22)=x1x2((x1+x2)2-2x1x2)=7 (*)
(với x1,x2 là hai nghiệm của phương trình).
theo viet ta có x1.x2=m; x1+x2=3 thay vào (*) ta được:
m(9-2m)=7<=> -2m2+9m-7=0<=> m=7/2(loại) hoặc m=1.(TM)
vậy m=1
2) B(xB;yB) thuộc (P): y=2x2 và xB=-2 => yB=2.(-2)2=8
=> B(-2;8)
đồ thị hàm số y=ax+b đi qua điểm A(1;-2) và điểm B(-2;8) <=>
\(\left\{{}\begin{matrix}a+b=-2\\-2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{10}{3}\\b=\dfrac{4}{3}\end{matrix}\right.\)
pt (1) <=>\(x=2+my-4m\) thay vào pt (2) có:
\(\left(2+my-4m\right)m+y=3m+1\)
<=>\(y\left(m^2+1\right)=m+4m^2+1\) (3)
Để hpt có nghiệm <=> pt (3) có nghiệm
<=> \(m^2+1\ne0\) (luôn đúng với mọi m)
=> pt (3) có nghiệm duy nhất => hpt có nghiệm duy nhất với mọi m.
Do x0,y0 là 1 nghiệm của hệ => \(\left\{{}\begin{matrix}x_0-my_0=2-4m\\my_0+y_0=3m+1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(3-x_0\right)\left(y_0-4\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(3-x_0\right)\left(y_0-4\right)\end{matrix}\right.\)
=>\(\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)
<=>\(5x_0-x_0^2-6=y_0^2-5y_0+4\)
<=>\(x^2_0+y^2_0-5\left(y_0+x_0\right)+10=0\)
ĐKXĐ: \(m\ne-\dfrac{1}{3}\)
a) Để (P) đi qua điểm \(E\left(\dfrac{1}{2};\dfrac{1}{4}\right)\) thì
Thay \(x=\dfrac{1}{2}\)và \(y=\dfrac{1}{4}\) vào hàm số \(y=\left(3m+1\right)x^2\), ta được:
\(\left(3m+1\right)\cdot\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow3m+1=1\)
\(\Leftrightarrow3m=0\)
hay m=0(thỏa ĐK)
b) Ta có: \(\left\{{}\begin{matrix}3x-4y=2\\-4x+3y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x-16y=8\\-12x+9y=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=-7\\3x-4y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\3x=2+4y=2+4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy: F(2;1)
Để (P) đi qua điểm F(2;1) thì
Thay x=2 và y=1 vào hàm số \(y=\left(3m+1\right)x^2\), ta được:
\(\left(3m+1\right)\cdot4=1\)
\(\Leftrightarrow3m+1=\dfrac{1}{4}\)
\(\Leftrightarrow3m=-\dfrac{3}{4}\)
\(\Leftrightarrow m=\dfrac{-3}{4}:3=\dfrac{-3}{4}\cdot\dfrac{1}{3}=\dfrac{-1}{4}\)(thỏa ĐK)