Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.
*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố
*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)
=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số
=> p + 100 là hợp số.
Ta có: p là một số nguyên tố > 3 => p chia 3 dư 1 hoặc 2
=> p = 3n +1 ; p = 3n +2
=> p + 8 = 3n +9 ( là hợp số nên loại)
p + 8 = 3n + 10 (nhận)
Ta có: p = 3n + 2
=> p + 100 = 3n + 102
=> đpcm
+) Với p=2 \(\Rightarrow p+8=2+8=10\)( ko là SNT )
\(\Rightarrow p=2\)( loại )
+) Với \(p=3\Rightarrow p+8=3+8=11\)( là SNT)
\(\Rightarrow4p+1=3.4+1=13\)( là SNT)
\(\Rightarrow p=3\)( chọn )
+) Với p>3 \(\Rightarrow p\)có dạng 3k+1 ( k \(\in N\))
hoặc 3k+2
+) Với \(p=3k+1\Rightarrow p+8=3k+1+8=3k+9=3\left(k+3\right)⋮3\)
Mà \(3\left(k+3\right)>0\)
\(\Rightarrow3\left(k+3\right)\)là hợp số
\(\Rightarrow p=3k+1\)( loại )
+) Với \(p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+2=12k+10=2\left(6k+5\right)⋮2\)
Mà \(2\left(6k+5\right)>0\)
\(\Rightarrow2\left(6k+5\right)\)là hợp số
\(\Rightarrow p=3k+2\)(loại )
Vậy p và p+8 là SNT thì 4p+1 là SNT
Đề bài thiếu p>3 ùi.
Vì p>3 nên p có dạng 3k+1 và 3k+2.
Với p=3k+2:
p+4=3k+2+4=3.(k+2) chia hết cho 3 là hợp số.
=>p=3k+1.
p+8=3k+1+8=3.(k+3) là hợp số.
=>p+8 lun là hợp số.
xong
Đề bài thiếu p>3 ùi.
Vì p>3 nên p có dạng 3k+1 và 3k+2.
Với p=3k+2:
p+4=3k+2+4=3.(k+2) chia hết cho 3 là hợp số.
=>p=3k+1.
p+8=3k+1+8=3.(k+3) là hợp số.
=>p+8 lun là hợp số.
xong
B2
Vì p nguyên tố > 3 nên p lẻ => p^2 lẻ => p^2 + 2003 chia hết cho 2
Mà p^2+2003 > 2 => p^2+2003 là hợp số
k mk nha
bài 2 số nguyên tố lớn hơn 3 chỉ có thể là số lẻ
=> số lẻ nhân số lẻ bằng một số lẻ
vì 2003 là số lẻ nên số lẻ cộng số lẻ bang số chẵn lớn hơn 2 (vì p^2 là một số nguyên dương)
=> p^2 +2003 là hợp số
ai làm chi tiết cho mik đi mik tick người đó 5 li-ke
phải có điều kiện p>3 nữa