K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

Đề bài thiếu p>3 ùi.

Vì p>3 nên p có dạng 3k+1 và 3k+2.

Với p=3k+2:

p+4=3k+2+4=3.(k+2) chia hết cho 3 là hợp số.

=>p=3k+1.

p+8=3k+1+8=3.(k+3) là hợp số.

=>p+8 lun là hợp số.

xong

11 tháng 9 2016

Đề bài thiếu p>3 ùi.

Vì p>3 nên p có dạng 3k+1 và 3k+2.

Với p=3k+2:

p+4=3k+2+4=3.(k+2) chia hết cho 3 là hợp số.

=>p=3k+1.

p+8=3k+1+8=3.(k+3) là hợp số.

=>p+8 lun là hợp số.

xong

14 tháng 11 2017

B2

Vì p nguyên tố > 3 nên p lẻ => p^2 lẻ => p^2 + 2003 chia hết cho 2

Mà p^2+2003 > 2 => p^2+2003 là hợp số

k mk nha

14 tháng 11 2017

bài 2 số nguyên tố lớn hơn 3 chỉ có thể là số lẻ

=> số lẻ nhân số lẻ bằng một số lẻ 

vì 2003 là số lẻ nên  số lẻ cộng số lẻ bang số chẵn lớn hơn  2 (vì p^2 là một số nguyên dương)

=> p^2 +2003  là hợp số

22 tháng 8 2019

+) Với p=2 \(\Rightarrow p+8=2+8=10\)( ko là SNT )

                   \(\Rightarrow p=2\)( loại )

+) Với \(p=3\Rightarrow p+8=3+8=11\)( là SNT) 

                     \(\Rightarrow4p+1=3.4+1=13\)( là SNT)

                   \(\Rightarrow p=3\)( chọn )

+) Với p>3 \(\Rightarrow p\)có dạng 3k+1            ( k \(\in N\)

                                    hoặc 3k+2

+) Với \(p=3k+1\Rightarrow p+8=3k+1+8=3k+9=3\left(k+3\right)⋮3\)

                                                                                     Mà \(3\left(k+3\right)>0\)

                 \(\Rightarrow3\left(k+3\right)\)là hợp số 

                 \(\Rightarrow p=3k+1\)( loại )

+) Với \(p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+2=12k+10=2\left(6k+5\right)⋮2\) 

                                                                 Mà \(2\left(6k+5\right)>0\)

                \(\Rightarrow2\left(6k+5\right)\)là hợp số

                 \(\Rightarrow p=3k+2\)(loại )

Vậy p và p+8 là SNT thì 4p+1 là SNT

10 tháng 12 2015

Goi b la so nghuyen to lon hon 3  chia cho 3 xay ra 3 truong hop                                                                                                                 truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to    (khong duoc)                                                                                  truong hop 2 :b chia cho 3 du 1    (duoc                                                                                                                                                  truong hop 3:b cia cho 3 du 2     (duoc)

24 tháng 6 2022

b) vì p là số nguyên tố>3(gt)

=>p có dạng 3k+1 howacj 3k+2

Nếu p=3k+2

=> p+4=3k+6 ⋮ 3

mà p+4 là số nguyên tố>3(do p>3)

=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố

Nếu p=3k+1

=> p+4=3k+5 (hợp lí)

vậy p+8 là hợp số

=>p+8=3k+9 ⋮ 3

=>p+8 là hợp số

c)vì p là số nguyên tố>3(gt)

=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp

g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp

2k(2k+2)=4k(k+1)

với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp

=> k(k+1)⋮2

=>4k(k+1)⋮8

=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8

=>(p-1)(p+1) ⋮ 8 (1)

ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp

=>(p-1)p(p+1)⋮3

mà p là số nguyên tố>3(gt) => p không chia hết cho 3

=> (p-1)(p+1) ⋮ 3 (2)

từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau

=> (p-1)(p+1) ⋮ (3.8)

=> (p-1)(p+1) ⋮ 24

22 tháng 10 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

22 tháng 10 2016

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số  b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

AH
Akai Haruma
Giáo viên
15 tháng 8 2017

Lời giải:

\(\bullet\)Nếu $p=2$ thì \(10p+1\not\in \mathbb{P}\) (loại)

\(\bullet\) Nếu \(p=3\Rightarrow 10p+1\in\mathbb{P}\). Cùng lúc đó \(5p+1=16\) là hợp số.

\(\bullet\) Nếu \(p>3\Rightarrow p\not\vdots 3\). Xét 2 TH:

TH1: \(p=3k+1\)

Khi đó \(5p+1=5(3k+1)+1=15k+6\vdots 3\) . Mà \(15k+6>3\) nên là hợp số.

TH2: \(p=3k+2\Rightarrow 10p+1=30k+21\vdots 3\), lớn hơn $3$ nên không thể là số nguyên tố (trái với đkđb)

Từ các trường hợp trên, ta có đpcm.

22 tháng 10 2016

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p + 1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
Mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p + 1 chia hết cho 2.3 = 6 
=> 5p + 1 là hợp số

 

22 tháng 10 2016

nhưng đây là có p >3

30 tháng 12 2019

Đoạn p,q là p mũ 4 và q mũ 4 nha
 

30 tháng 12 2019

em mớ lớp 5 nên không biết