Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a và b lần lượt là chiều rộng và chiều dài của mảnh ruộng hình chữ nhật(m) (với điều kiện a>0, b>0)
Theo bài ra ta có: ab=100=> a=100/b (1)
(a+2)(b-5)=100+5 =105(2)
Thay pt 1) vào pt (2) ta được:
100 -500/b +2b -10=105
<=>100b/b -500/b +2b^2/b -10b/b =105b/b
=>100b -500 +2b^2 -10b-105b=0
<=>2b^2-15b-500=0
<=>2(b^2 -15/2 .b -250)=0
<=>b^2- 15/2.b -250=0
<=>b^2 +25/2 .b -20b -250=0
<=>(b^2 -20b) +(25/2. b -250)=0
<=>b(b-20) + 25/2 .(b-20)=0
<=>(b-20)(b+25/2)=0
<=> b-20 =0 hoặc b+25/2 =0
<=>b=20(thỏa mãn điều kiện) hoặc b=-25/2(loại)
Vậy chiều dài của mảnh ruộng hình chữ nhật là 20 m=> chiều rộng của mảnh vườn là 100/20 =5m
Gọi chiều dài chiều rộng thửa ruộng lần lượt a ; b ( a > b> 0 )
Theo bài ra ta có hpt \(\hept{\begin{cases}2\left(a+b\right)=100\\\left(a+5\right)\left(b-2\right)=ab+30\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=50\\-2a+5b=40\end{cases}\Leftrightarrow}\hept{\begin{cases}a=30\\b=20\end{cases}}}\)(tm)
Vậy chiều dài ban đầu là 30 m
chiều rộng ban đầu là 20 m
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng đó(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chiều dài lớn hơn chiều rộng 5m nên ta có phương trình: \(a-b=5\)(1)
Diện tích ban đầu của thửa ruộng là: \(a\cdot b\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 4m thì diện tích mảnh đất giảm đi \(180m^2\)nên ta có phương trình:
\(\left(a-5\right)\left(b-4\right)=ab-180\)
\(\Leftrightarrow ab-4a-5b+20-ab+180=0\)
\(\Leftrightarrow-4a-5b+200=0\)
\(\Leftrightarrow-4a-5b=-200\)
\(\Leftrightarrow4a+5b=200\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\4a+5b=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-4b=20\\4a+5b=200\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-9b=-180\\a-b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\a=5+b=5+20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích của thửa ruộng đó là:
\(S=a\cdot b=25\cdot20=500\left(m^2\right)\)
Gọi: chiều dài ban đầu : 3a (m) , chiều rộng ban đầu : a (m)
Nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng 20m :
( 3a - 5 ) - ( a+ 3 ) = 20
=> a = 14
Diện tích thửa ruộng :
S = 14 x 3 x 14 = 588 (m2)
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chiều dài gấp ba lần chiều rộng nên ta có phương trình: a=3b(1)
Vì khi tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng là 20m nên ta có phương trình:
\(\left(a-5\right)-\left(b+3\right)=20\)
\(\Leftrightarrow a-5-b-3-20=0\)
\(\Leftrightarrow a-b-28=0\)
\(\Leftrightarrow a-b=28\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a=3b\\a-b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-3b=0\\a-b=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2b=-28\\a-3b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=14\\a=3\cdot14=42\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài và chiều rộng của thửa ruộng lần lượt là 42m và 14m
Diện tích thửa ruộng là: \(42\cdot14=588\left(m^2\right)\)
Gọi chiều dài thửa ruộng là \(x( m) (x>5)\)
Gọi chiều rộng thửa ruongj là \(y ( m) (y >0)\)
Theo điều kiện đầu ta có phương trình \(x - 3y =0\)(1)
Theo điều kiện sau ta có phương trình \((x-5)-(y+3) =20 \)
⇒ \(x-5-y-3=20\)
⇔\(x-y=28\)(2)
Từ 1 và 2 ta có hệ \(\left\{{}\begin{matrix}x-3y=0\\x-y=28\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=42\left(tm\right)\\y=14\left(tm\right)\end{matrix}\right.\)
⇒ Diện tích thửa ruộng là 14.42=588(m2 )
Gọi chiều rộng là x
=>Chiều dài là x+60
Theo đề, ta có: (x+2)(x+55)=x(x+60)+5
=>x^2+57x+110-x^2-60x=5
=>-3x=-105
=>x=35
=>Chiều dài là 95m
mình ko biết
Tui tìm được chiều dài là 55 m rộng là 45m
Gọi chiều dài và chiều rộng lần lượt là a, b (a>0; b>5)
Theo bài ta có phương trình diện tích là
ab -74 = (a+5)(b-5)
<=> ab - ab +5a-5b+25=75 ( chuyển vế và phân tích)
<=> 5a-5b=75-25=50
<=> a-b= 10 ( rút gọn)
Mà chu vi thửa ruộng là 200 m => a+b=100
Từ a-b=10 (1) và a+b=100 (2) ta giải bài toán bằng cách lập phương trình bình thường
=> a=55 và b=45 [thỏa mãn (1) và (2)]
Thử lại ta có a×b =55×45=2475( m2)
(a+5)(b-5)=60×40=2400(m2)
Tui học lớp 8 ;))